日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情
在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個半圓的圓心.F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.

(1)如圖一,連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)過點A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點P和點Q,連接PQ,①如圖二,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;②如圖三,若連接FA,猜想PQ與FA的位置關系,并說明你的結論.
【答案】分析:(1)利用三角形中位線定理以及平行線的性質推知∠BO1F=∠CO2F;然后根據平行四邊形的對邊相等、圓周角定理知O1F=AO2=O2E,O2F=AO1=O1D,∠BO1D=90°,∠CO2E=90°;最后利用圖形上角間的和差關系求得∠DO1F=∠FO2E,由全等三角形的判定定理ASA證得△DO1F≌△FO2E;
(2)①延長CA至G,使AG=AQ,連接BG、AE,構建全等三角形△AQP≌△AGB;然后根據全等三角形的對應邊相等可以求得PQ=BG;最后在直角三角形BCG中利用勾股定理知BG=2
即PQ=2
②PQ⊥AF.
解答:(1)證明:如圖一,
∵O1,O2,F分別是AB,AC,BC邊的中點,
∴O1F∥AC且O1F=AO2,O2F∥AB且O2F=AO1
∴∠BO1F=∠BAC,∠CO2F=∠BAC,
∴∠BO1F=∠CO2F
∵點D和點E分別為兩個半圓圓弧的中點,
∴O1F=AO2=O2E,O2F=AO1=O1D,∠BO1D=90°,∠CO2E=90°,
∴∠BO1D=∠CO2E.
∴∠DO1F=∠FO2E.
∴△DO1F≌△FO2E.

(2)解:①如圖二,延長CA至G,使AG=AQ,連接BG、AE.
∵點E是半圓O2圓弧的中點,
∴AE=CE=3
∵AC為直徑
∴∠AEC=90°,
∴∠ACE=∠EAC=45°,AC==
∵AQ是半圓O2的切線,
∴CA⊥AQ,
∴∠CAQ=90°,
∴∠ACE=∠AQE=45°,∠GAQ=90°
∴AQ=AC=AG=
同理:∠BAP=90°,AB=AP=
∴CG=,∠GAB=∠QAP
∴△AQP≌△AGB.
∴PQ=BG
∵∠ACB=90°,
∴BC==
∴BG==
∴PQ=
②PQ⊥AF.
點評:本題綜合考查了切線的性質、勾股定理以及全等三角形的判定與性質.運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.
練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

如圖一,在△ABC中,分別以AB,AC為直徑在△ABC外作半圓O1和半圓O2,其中O1和O2分別為兩個半圓的圓心.F是邊BC的中點,點D和點E分別為兩個半圓圓弧的中點.
(1)連接O1F,O1D,DF,O2F,O2E,EF,證明:△DO1F≌△FO2E;
(2)如圖二,過點A分別作半圓O1和半圓O2的切線,交BD的延長線和CE的延長線于點P和點Q,連接PQ,若∠ACB=90°,DB=5,CE=3,求線段PQ的長;
(3)如圖三,過點A作半圓O2的切線,交CE的延長線于點Q,過點Q作直線FA的垂線,交BD的延長線于點P,連接PA.證明:PA是半圓O1的切線.
精英家教網精英家教網精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

(1)如圖1,圖2,圖3,在△ABC中,分別以AB,AC為邊,向△ABC外作正三角形,正四邊形,正五邊形,BE,CD相交于點O.
①如圖1,求證:△ABE≌△ADC;
②探究:如圖1,∠BOC=
 

如圖2,∠BOC=
 

如圖3,∠BOC=
 

(2)如圖4,已知:AB,AD是以AB為邊向△ABC外所作正n邊形的一組鄰邊;AC,AE是以AC為邊向△ABC外所作正n邊形的一組鄰邊,BE,CD的延長相交于點O.
①猜想:如圖4,∠BOC=360÷n(用含n的式子表示);
②根據圖4證明你的猜想.
精英家教網

查看答案和解析>>

科目:初中數學 來源: 題型:

精英家教網如圖,在△ABC中,分別以AB、BC為直徑的⊙O1、⊙O2交于AC上一點D,且⊙O1經過點O2,AB、DO2的延長線交于點E,且BE=BD.則下列結論不正確的是(  )
A、AB=AC
B、∠BO2E=2∠E
C、AB=
2
BE
D、EO2=
2
BE

查看答案和解析>>

科目:初中數學 來源: 題型:

(2012•大田縣質檢)如圖,在△ABC中,分別以點A和點B為圓心,大于
12
AB
的長為半徑畫弧,兩弧交于點M,N,作直線MN,交BC于點D,連接AD.若△ADC的周長為12,AB=16,則△ABC的周長為
28
28

查看答案和解析>>

科目:初中數學 來源: 題型:

如圖,在△ABC中,分別以AC,AB,BC為邊向外作正方形,面積分別記為S1,S2,S3,若S1=6,S2=6,S3=12,則△ABC的形狀是
等腰直角三角形
等腰直角三角形

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 国产精品一区二区久久乐夜夜嗨 | 99久久久久久 | 天天天天天天天天操 | 欧美性一区二区 | av综合在线观看 | 美女一级a毛片免费观看97 | 国产综合一区二区 | 日韩欧美中文在线 | 91精品中文字幕一区二区三区 | 狠狠干影院 | 91在线资源 | 99国产精品久久久久久久 | 午夜视频在线观看网站 | 欧美综合一区二区 | av网址在线播放 | 一级日韩片| 国产一区二区三区免费在线 | 一区二区三区精品视频 | 久久99国产精品久久99大师 | 羞羞视频在线观看视频 | 狠狠久 | 91精品国产综合久久精品 | 国产午夜手机精彩视频 | 色激情五月 | 精品一区二区三区在线观看视频 | 欧美国产精品一区 | 色约约精品免费看视频 | 精品国产一区二区三区性色 | 亚洲色图3p | 久久久久一级 | 亚洲国产福利在线 | 久久久天堂 | 成人在线观看一区 | 精品亚洲在线 | 精品国产欧美一区二区三区不卡 | 国产传媒在线视频 | 成人欧美一区二区三区在线播放 | 日韩午夜电影 | 国产美女高潮一区二区三区 | 91嫩草在线 | 国产区第一页 |