日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

10.如圖1,已知三角形紙片ABC,AB=AC,∠C=65°.將其折疊,如圖2,使點(diǎn)A與點(diǎn)B重合,折痕為ED,點(diǎn)E,D分別在AB,AC上,那么∠DBC的度數(shù)為(  )
A.10°B.15°C.20°D.25°

分析 由AB=AC,∠C=65°,根據(jù)等邊對(duì)等角的性質(zhì),可求得∠ABC的度數(shù),又由折疊的性質(zhì),可求得∠ABD=∠A=50°,繼而求得答案.

解答 解:∵AB=AC,∠C=65°,
∴∠ABC=∠C=65°,
∴∠A=180°-∠ABC-∠C=50°,
由折疊的性質(zhì)可得:AD=BD,
∴∠ABD=∠A=50°,
∴∠DBC=∠ABC-∠ABD=15°.
故選B.

點(diǎn)評(píng) 此題考查了折疊的性質(zhì)以及等腰三角形的性質(zhì).注意掌握折疊中的對(duì)應(yīng)關(guān)系.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

10.某家用電器經(jīng)過(guò)兩次降價(jià),每臺(tái)零售價(jià)由1000元下降到810元.若兩次降價(jià)的百分率相同,則這個(gè)百分率為10%.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

1.如圖,河上有一座拋物線橋洞,已知橋下的水面離橋拱頂部3m時(shí),水面寬AB為6m,當(dāng)水位上升0.5m時(shí):
(1)求水面的寬度CD為多少米?
(2)當(dāng)水面的寬度到CD時(shí),有一艘游船,它的左右兩邊緣最寬處有一個(gè)長(zhǎng)方體形狀的遮陽(yáng)棚,此船正對(duì)著橋洞在上述河流中航行,若游船寬(指船的最大寬度)為2m,從水面到棚頂?shù)母叨葹?.8m,問(wèn)這艘游船能否從橋洞下通過(guò)?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

18.請(qǐng)閱讀下面材料,并回答所提出的問(wèn)題.
三角形內(nèi)角平分線定理:三角形的內(nèi)角平分線分隊(duì)邊所得的兩條線段和這個(gè)角的兩邊對(duì)應(yīng)成比例.
已知:$\frac{AB}{AC}$=$\frac{BD}{DC}$
證明:過(guò)C作CE∥DA,交BA的延長(zhǎng)線于E.
∴∠1=∠E,∠2=∠3.----①
∵AD是角平分線,
∴∠1=∠2.
∴∠3=∠E.----②
又∵AD∥CE,
∴$\frac{AB}{AE}$=$\frac{BD}{DC}$----③
∴$\frac{AB}{AC}$=$\frac{BD}{DC}$.
(1)上述證明過(guò)程中,步驟①②③處的理由是什么?(寫出兩條即可)
(2)用三角形內(nèi)角平分線定理解答,已知,△ABC中,AD是角平分線,AB=7cm,AC=4cm,BC=6cm,求BD的長(zhǎng);
(3)我們知道如果兩個(gè)三角形的高相等,那么它們面積的比就等于底的比.請(qǐng)你通過(guò)研究△ABBD和△ACD面積的比來(lái)證明三角形內(nèi)角平分線定理.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

5.為了弘揚(yáng)“社會(huì)主義核心價(jià)值觀”,樂(lè)至縣政府在廣場(chǎng)樹立公益廣告牌,如圖所示,為固定廣告牌,在兩側(cè)加固鋼纜,已知鋼纜底端D距廣告牌立柱距離CD為3米,從D點(diǎn)測(cè)得廣告牌頂端A點(diǎn)和底端B點(diǎn)的距離分別是5米和$3\sqrt{2}$米.
(1)求公益廣告牌的高度AB;
(2)求∠BDC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

15.在平面直角坐標(biāo)系中,直線y=-$\frac{5}{12}$x+5與x軸、y軸分別交于點(diǎn)A、B,P是射線AB上一動(dòng)點(diǎn),設(shè)AP=a,以AP為直徑作⊙C.

(1)求cos∠ABO的值;
(2)當(dāng)a為何值時(shí),⊙C與坐標(biāo)軸恰有3個(gè)公共點(diǎn);
(3)過(guò)P作PM⊥x軸于M,與⊙C交于點(diǎn)D,連接OD交AB于點(diǎn)N,若∠ABO=∠D,求a的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖①,ABCD是邊長(zhǎng)為60cm的正方形硬紙片,切去四個(gè)全等的等腰直角三角形(陰影部分所示),其中E,F(xiàn)在AB上;再沿虛線折起,點(diǎn)A,B,C,D恰好重合于點(diǎn)O處(如圖②所示),形成有一個(gè)底面為正方形GHMN的包裝盒,設(shè)AE=x (cm).
(1)求線段GF的長(zhǎng);(用含x的代數(shù)式表示)
(2)當(dāng)x為何值時(shí),矩形GHPF的面積S (cm2)最大?最大面積為多少?
(3)試問(wèn):此種包裝盒能否放下一個(gè)底面半徑為15cm,高為10cm的圓柱形工藝品,且使得圓柱形工藝品的一個(gè)底面恰好落在圖②中的正方形GHMN內(nèi)?若能,請(qǐng)求出滿足條件的x的值或范圍;若不能,請(qǐng)說(shuō)明理由. 

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖1,拋物線y=ax2+bx+3(a≠0)與x軸、y軸分別交于點(diǎn)A(-1,0)、B(3,0)、點(diǎn)C三點(diǎn).
(1)試求拋物線的解析式;
(2)點(diǎn)D(2,m)在第一象限的拋物線上,連接BC、BD.試問(wèn),在對(duì)稱軸左側(cè)的拋物線上是否存在一點(diǎn)P,滿足∠PBC=∠DBC?如果存在,請(qǐng)求出點(diǎn)P點(diǎn)的坐標(biāo);如果不存在,請(qǐng)說(shuō)明理由;
(3)如圖2,在(2)的條件下,將△BOC沿x軸正方向以每秒1個(gè)單位長(zhǎng)度的速度向右平移,記平移后的三角形為△B′O′C′.在平移過(guò)程中,△B′O′C′與△BCD重疊的面積記為S,設(shè)平移的時(shí)間為t秒,試求S與t之間的函數(shù)關(guān)系式?

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題

20.5的絕對(duì)值是5.

查看答案和解析>>

同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲激情第一页 | 日韩专区一区二区三区 | 国产性久久 | 一区二区视频网 | 亚洲成av| 亚洲精品久久久久久下一站 | 国产不卡一区 | 色偷偷噜噜噜亚洲男人的天堂 | 精品亚洲永久免费精品 | 日韩网站在线 | 免费不卡视频在线观看 | 欧美高清一区 | 男女视频在线观看 | a中文字幕 | 污视频免费网站观看 | 一级a毛片免费 | 涩涩操 | 国产精品久久久久影院色老大 | 久久久久久影院 | 国产日韩一区二区三区 | 国产99在线 | 欧美 | 天天舔天天干天天操 | 亚洲午夜精品在线观看 | 国产香蕉视频在线播放 | 成人aaaa| 午夜精品一区二区三区四区 | 欧美 日韩 亚洲 一区 | 青草青草视频2免费观看 | 高清国产一区二区三区四区五区 | 久久精品99| 国产一区二区三区视频在线观看 | 国产一区二区三区av在线 | 在线亚洲一区二区 | 色8久久 | 精品www| 欧美成人免费视频 | 久久精品欧美一区二区三区不卡 | 国产一区二区精品在线 | 又大又粗又长又黄视频 | 成人在线不卡 | av在线成人|