【題目】閱讀以下材料,并按要求完成相應的任務.
在初中數學課本中重點介紹了提公因式法和運用公式法兩種因式
分解的方法,其中運用公式法即運用平方差公式:和完全平方公式:
進行分解因式,能運用完全平方公式分解因式的多項式必須是三項式,其中有兩項能寫成兩個數(或式)的平方和的形式,另一項是這兩個數(或式)的積的2倍.當一個二次三項式不能直接能運用完全平方公式分解因式時,可應用下面方法分解因式,先將多項式
變形為
的形式,我們把這樣的變形方法叫做多項式
的配方法.再運用多項式的配方法及平方差公式能對一些多項式進行分解因式.
例如:
.
根據以上材料,完成相應的任務:
(1)利用“多項式的配方法”將化成
的形式為_______;
(2)請你利用上述方法因式分解:
①; ②
.
科目:初中數學 來源: 題型:
【題目】下列說法:①若式子有意義,則
的取值范圍是
;②正多邊形的的一個內角是140°,則這個多邊形是正九邊形;③甲、乙兩人進行射擊測試,每人次射擊成績的平均數都是8.8環,方差分別是
,
,則射擊成績最穩定的是乙;④若
是方程
的一個實數根,則
的值是4.其中正確的有( )個
A.1B.2C.3D.4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某化妝品專賣店,為了吸引顧客,準備在“母親節”當天舉辦了甲、乙兩種品牌化妝品有獎酬賓活動,凡購物滿元,均可得到一次搖獎的機會.已知在搖獎機內裝有
個紅球和
個白球,除顏色外其它都相同,搖獎者必須從搖獎機中一次連續搖出兩個球,根據球的顏色決定送禮金券的多少(如下表):
()請你用列表法(或畫樹狀圖法)求一次連續搖出一紅一白兩球的概率;
()如果一個顧客當天在本店購物滿
元,若只考慮獲得最多的禮品卷,請你幫助分析選擇購買哪種品牌的化妝品?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】矩形ABCD與CEFG,如圖放置,點B,C,E共線,點C,D,G共線,連接AF,取AF的中點H,連接GH.若BC=EF=2,CD=CE=1,則GH=( )
A. 1 B. C.
D.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某市舉行“傳承好家風”征文比賽,已知每篇參賽征文成績記m分(60≤m≤100),組委會從1000篇征文中隨機抽取了部分參賽征文,統計了他們的成績,并繪制了如下不完整的兩幅統計圖表.
請根據以上信息,解決下列問題:
(1)征文比賽成績頻數分布表中c的值是________;
(2)補全征文比賽成績頻數分布直方圖;
(3)若80分以上(含80分)的征文將被評為一等獎,試估計全市獲得一等獎征文的篇數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】浠水縣商場某柜臺銷售每臺進價分別為160元、120元的A、B兩種型號的電風扇,下表是近兩周的銷售情況:
銷售時段 | 銷售數量 | 銷售收入 | |
A種型號 | B種型號 | ||
第一周 | 3臺 | 4臺 | 1200元 |
第二周 | 5臺 | 6臺 | 1900元 |
(進價、售價均保持不變,利潤=銷售收入﹣進貨成本)
(1)求A、B兩種型號的電風扇的銷售單價;
(2)若商場準備用不多于7500元的金額再采購這兩種型號的電風扇共50臺,求A種型號的電風扇最多能采購多少臺?
(3)在(2)的條件下,商場銷售完這50臺電風扇能否實現利潤超過1850元的目標?若能,請給出相應的采購方案;若不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某廠商投產一種新型電子產品,每件制造成本為18元,試銷過程中發現,每月銷售量y(萬件)與銷售單價x(元)之間的關系可以近似地看作一次函數y=-2x+100.(利潤=售價-制造成本)
(1)寫出每月的利潤z(萬元)與銷售單價x(元)之間的函數關系式;
(2)當銷售單價為多少元時,廠商每月能獲得350萬元的利潤?當銷售單價為多少元時,廠商每月能獲得最大利潤?最大利潤是多少?
(3)根據相關部門規定,這種電子產品的銷售單價不能高于32元,如果廠商要獲得每月不低于350萬元的利潤,那么制造出這種產品每月的最低制造成本需要多少萬元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某片果園有果樹80棵,現準備多種一些果樹提高果園產量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產量隨之降低,若該果園每棵果樹產果y千克,增種果樹x棵,它們之間的函數關系如圖所示.
(1)求y與x之間的函數解析式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當增種果樹多少棵時,果園的總產量w(千克)最大?最大產量是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com