【題目】某片果園有果樹80棵,現準備多種一些果樹提高果園產量,但是如果多種樹,那么樹之間的距離和每棵樹所受光照就會減少,單棵樹的產量隨之降低,若該果園每棵果樹產果y千克,增種果樹x棵,它們之間的函數關系如圖所示.
(1)求y與x之間的函數解析式;
(2)在投入成本最低的情況下,增種果樹多少棵時,果園可以收獲果實6750千克?
(3)當增種果樹多少棵時,果園的總產量w(千克)最大?最大產量是多少?
【答案】(1)y=-0.5x+80;(2)10棵;(3)40棵時果園的最大產量是7200千克.
【解析】試題分析:(1)函數的表達式為y=kx+b,把點(12,74),(28,66)代入解方程組即可.(2)列出方程解方程組,再根據實際意義確定x的值.(3)構建二次函數,利用二次函數性質解決問題.
試題解析:(1)設函數的表達式為y=kx+b,該一次函數過點(12,74),(28,66),
得,
解得,
∴該函數的表達式為y=﹣0.5x+80,
(2)根據題意,得,
(﹣0.5x+80)(80+x)=6750,
解得,x1=10,x2=70
∵投入成本最低.
∴x2=70不滿足題意,舍去.
∴增種果樹10棵時,果園可以收獲果實6750千克.
(3)根據題意,得
w=(﹣0.5x+80)(80+x)
=﹣0.5 x2+40 x+6400
=﹣0.5(x﹣40)2+7200
∵a=﹣0.5<0,則拋物線開口向下,函數有最大值
∴當x=40時,w最大值為7200千克.
∴當增種果樹40棵時果園的最大產量是7200千克.
科目:初中數學 來源: 題型:
【題目】規定:如果10n=M,則稱n是M的常用對數,記作:lgM=n.如102=100,所以lg100=2.那么以下選項正確的有______(填寫序號).
①lg1000=3; ②lg10+lg100=lg110; ③lg1+lg0.1=﹣1;④10lgM=M(M是正數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD中,AB=6,BC=8,E是BC邊上的一定點,P是CD邊上的一動點(不與點C、D重合),M,N分別是AE、PE的中點,記MN的長度為a,在點P運動過程中,a不斷變化,則a的取值范圍是___________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖①,△ABC與△CDE是等腰直角三角形,直角邊AC、CD在同一條直線上,點M、N分別是斜邊AB、DE的中點,點P為AD的中點,連接AE、BD.
(1)猜想PM與PN的數量關系及位置關系,請直接寫出結論;
(2)現將圖①中的△CDE繞著點C順時針旋轉α(0°<α<90°),得到圖②,AE與MP、BD分別交于點G、H.請判斷(1)中的結論是否成立?若成立,請證明;若不成立,請說明理由;
(3)若圖②中的等腰直角三角形變成直角三角形,使BC=kAC,CD=kCE,如圖③,寫出PM與PN的數量關系,并加以證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】有一塊長為80厘米,寬為60厘米的長方形木塊,現要鋸成同樣大小的正方形(正方形的邊長為整數),且不能有剩余,則長方形最少可以鋸成幾塊正方形?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com