的平方根是 .
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
已知A,B,C是⊙O上的三個點(diǎn),四邊形OABC是平行四邊形,那么下列結(jié)論中錯誤的是( )
A.∠AOC=120°
B.四邊形OABC一定是菱形
C.若連接AC,則AC=OA
D.若連接AC、BO,則AC與BO互相垂直平分
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
有五張下面分別標(biāo)有數(shù)字﹣2,0,,1,3的不透明卡片,它們除數(shù)字不同外其余全部相同.現(xiàn)將它們背面朝上,洗勻后從中任取一張,將該卡片上的數(shù)字記為a,則使關(guān)于x的分工方程
+2=
有整數(shù)解的概率是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在△ABC中,D,E分別是AB和AC上的點(diǎn),滿足AD=3,AE=2,EC=1,DE∥BC,則AB=( )
A.6 B.4.5 C.2 D.1.5
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在平面直角坐標(biāo)系xOy中,直線y=x+2與x軸交于點(diǎn)A,與y軸交于點(diǎn)C.拋物線y=ax2+bx+c的對稱軸是x=﹣
且經(jīng)過A、C兩點(diǎn),與x軸的另一交點(diǎn)為點(diǎn)B.
(1)①直接寫出點(diǎn)B的坐標(biāo);②求拋物線解析式.
(2)若點(diǎn)P為直線AC上方的拋物線上的一點(diǎn),連接PA,PC.求△PAC的面積的最大值,并求出此時點(diǎn)P的坐標(biāo).
(3)拋物線上是否存在點(diǎn)M,過點(diǎn)M作MN垂直x軸于點(diǎn)N,使得以點(diǎn)A、M、N為頂點(diǎn)的三角形與△ABC相似?若存在,求出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
如圖,在五邊形ABCDE中,∠A+∠B+∠E=300°,DP、CP分別平分∠EDC、∠BCD,則∠P的度數(shù)是( )
A.60° B.65° C.55° D.50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
問題背景:△AOB、△COD是兩個等腰直角三角形,現(xiàn)將直角頂點(diǎn)以及兩直角邊都重合在一起,如圖1所示,點(diǎn)P是CD中點(diǎn),連接BP并延長到E使PE=BP,連接EC,作平行四邊形ACEF,小林針對平行四邊形ACEF形狀進(jìn)行了如下探究:
觀察操作:(1)小林先假設(shè)小等腰直角三角形的直角邊非常小,這時三角形可以看作一個點(diǎn),如圖2所示,并提出猜想四邊形ACEF是 ;
猜想證明:(2)小林對比圖1和圖2的情形,完成了(1)中的猜想,請借助圖1幫他證明這個猜想.
拓展延伸:(3)如圖3所示,現(xiàn)將等腰直角三角形COD繞點(diǎn)O逆時針旋轉(zhuǎn)一定角度,其它條件都不改變,原來結(jié)論是否仍然成立?請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com