【提出問題】
(1)如圖1,在等邊△ABC中,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等邊△AMN,連結CN.求證:∠ABC=∠ACN.
【類比探究】
(2)如圖2,在等邊△ABC中,點M是BC延長線上的任意一點(不含端點C),其它條件不變,(1)中結論∠ABC=∠ACN還成立嗎?請說明理由.
【拓展延伸】
(3)如圖3,在等腰△ABC中,BA=BC,點M是BC上的任意一點(不含端點B、C),連結AM,以AM為邊作等腰△AMN,使頂角∠AMN=∠ABC.連結CN.試探究∠ABC與∠ACN的數量關系,并說明理由.
【考點】相似三角形的判定與性質;全等三角形的判定與性質;等邊三角形的性質.
【分析】(1)利用SAS可證明△BAM≌△CAN,繼而得出結論;
(2)也可以通過證明△BAM≌△CAN,得出結論,和(1)的思路完全一樣.
(3)首先得出∠BAC=∠MAN,從而判定△ABC∽△AMN,得到=
,根據∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,得到∠BAM=∠CAN,從而判定△BAM∽△CAN,得出結論.
【解答】(1)證明:∵△ABC、△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∵在△BAM和△CAN中,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN.
(2)解:結論∠ABC=∠ACN仍成立;
理由如下:∵△ABC、△AMN是等邊三角形,
∴AB=AC,AM=AN,∠BAC=∠MAN=60°,
∴∠BAM=∠CAN,
∵在△BAM和△CAN中,
∴△BAM≌△CAN(SAS),
∴∠ABC=∠ACN.
(3)解:∠ABC=∠ACN;
理由如下:∵BA=BC,MA=MN,頂角∠ABC=∠AMN,
∴底角∠BAC=∠MAN,
∴△ABC∽△AMN,
∴=
,
又∵∠BAM=∠BAC﹣∠MAC,∠CAN=∠MAN﹣∠MAC,
∴∠BAM=∠CAN,
∴△BAM∽△CAN,
∴∠ABC=∠ACN.
【點評】本題考查了相似三角形的判定與性質、全等三角形的判定與性質,解答本題的關鍵是仔細觀察圖形,找到全等(相似)的條件,利用全等(相似)的性質證明結論.
科目:初中數學 來源: 題型:
若a>b,且c為實數,有下列各式:
①ac>bc;②ac<bc;③ac2>bc2;④ac2≥bc2;⑤>
其中,正確的有( )
A.1個 B.2個 C.3個 D.4個
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在Rt△ABC中,∠ACB=90°,以AC為直徑的⊙O與AB邊交于點D,過點D作⊙O的切線,交BC于點E.
(1)求證:EB=EC;
(2)若以點O、D、E、C為頂點的四邊形是正方形,試判斷△ABC的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
國家體育場“鳥巢”建筑面積達258000平方米,258000用科學記數法表示應為( )
A.2.58×103 B.25.8×104 C.2.58×105 D.258×103
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com