【題目】初中生的視力狀況受到社會的廣泛關注,某市有關部門對全市3萬名初中生的視力狀況進行了一次抽樣調查,下圖是利用所得數據繪制的頻數分布直方圖,根據圖中所提供的信息回答下列問題:
(1)本次調查共抽測了多少名學生?
(2)在這個問題中的樣本指什么?
(3)如果視力在4.9-5.1(含4.9和5.1)均屬正常,那么全市有多少名初中生視力正常?
科目:初中數學 來源: 題型:
【題目】如圖,已知AD∥BC,點E為CD上一點,AE,BE分別平分∠DAB,∠CBA.
(1)求證:AE⊥BE;
(2)求證:DE=CE;
(3)若AE=4,BE=6,求四邊形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,A(3,0),B(0,3),過點B畫y軸的垂線l,點C在線段AB上,連結OC并延長交直線l于點D,過點C畫CE⊥OC交直線l于點E.
(1)求∠OBA的度數,并直接寫出直線AB的解析式;
(2)若點C的橫坐標為2,求BE的長;
(3)當BE=1時,求點C的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】若關于的二次函數
(
為常數)與
軸交于兩個不同的點
、
,與
軸交于點
,其圖象的頂點為點
是坐標原點.
(1)若、
、
,求此二次函數的解析式并寫出二次函數的對稱軸;
(2)如圖1,若,
,
為直角三角形,
是以
的等邊三角形,試確定
的值;
(3)設為正整數,且
,
,
為任意常數,令
,
,如果對于一切實數
,
始終成立,求
的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,某建筑物AC頂部有一旗桿AB,且點A,B,C在同一條直線上,小明在地面D處觀測旗桿頂端B的仰角為30°,然后他正對建筑物的方向前進了20米到達地面的E處,又測得旗桿頂端B的仰角為60°,已知建筑物的高度AC=12m,求旗桿AB的高度(結果精確到0.1米).參考數據:≈1.73,
≈1.41.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】請閱讀下列材料,并完成相應的任務:
阿基米德是有史以來最偉大的數學家之一,阿基米德的折弦定理是其推導出來的重要定理之一.阿基米德折弦定理:如圖,AB和BC是⊙O的兩條弦(即折線ABC是⊙O的一條折弦),BC>AB,M是弧ABC的中點,則從M向BC所作垂線的垂足D是折弦ABC的中點,即CD=AB+BD.下面是運用“截長法”證明CD=AB+BD的部分證明過程.
證明:如圖,在CB上截取CG=AB,連接MA,MB,MC和MG.
∵M是弧ABC的中點,
∴MA=MC.
…
請按照上面的證明思路,寫出該證明的剩余部分.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,∠A=∠B,AE=BE,點D在AC邊上,∠1=∠2,AE和BD相交于點O.
(1)求證:△AEC≌△BED;
(2)若∠1=42°,求∠BDE的度數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某甜品店計劃訂購一種鮮奶,根據以往的銷售經驗,當天的需求量與當天的最高氣溫T有關,現將去年六月份(按30天計算)的有關情況統計如下:(最高氣溫與需求量統計表)
最高氣溫(單位:攝氏度) | 需求量(單位:杯) |
T<25 | 250 |
300 | |
400 |
(1)求去年六月份最高氣溫不高于30℃的天數.
(2)若以最高氣溫位于各區間的頻率估計最高氣溫位于該區間的概率,求去年六月份這種鮮奶一天的需求量不超過250杯的概率.
(3)若今年六月份每天的進貨量均為350杯,每杯的進價為5元,售價為10元,未售出的這種鮮奶廠家以1元的價格收回銷毀,假設今年與去年的情況大致一樣,若今年六月份某天的最高氣溫T滿足大于等于25℃小于30℃ ,試估計這一天銷售這種鮮奶所獲得的利潤為多少元?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】中考英語聽力測試期間T需要杜絕考點周圍的噪音.如圖,點A是某市一中考考點,在位于考點南偏西15°方向距離500米的C點處有一消防隊.在聽力考試期間,消防隊突然接到報警電話,消防車需沿北偏東75°方向的公路CF前往救援.已知消防車的警報聲傳播半徑為400米,若消防車的警報聲對聽力測試造成影響,則消防車必須改道行駛.試問:消防車是否需要改道行駛?
說明理由.(≈1.732)
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com