【題目】如圖,AC是矩形ABCD的對角線,過AC的中點O作EF⊥AC,交BC于點E,交AD于點F,連接AE,CF.
(1)求證:四邊形AECF是菱形;
(2)若AB=,∠DCF=30°,求四邊形AECF的面積.(結果保留根號)
【答案】(1)證明見解析(2)2
【解析】試題分析:(1)由過AC的中點O作EF⊥AC,根據線段垂直平分線的性質,可得AF=CF,AE=CE,OA=OC,然后由四邊形ABCD是矩形,易證得△AOF≌△COE,則可得AF=CE,繼而證得結論;
(2)由四邊形ABCD是矩形,易求得CD的長,然后利用三角函數求得CF的長,繼而求得答案.
試題解析:(1)∵O是AC的中點,且EF⊥AC,
∴AF=CF,AE=CE,OA=OC,
∵四邊形ABCD是矩形,
∴AD∥BC,
∴∠AFO=∠CEO,
在△AOF和△COE中,
∴△AOF≌△COE(AAS),
∴AF=CE,
∴AF=CF=CE=AE,
∴四邊形AECF是菱形;
(2)∵四邊形ABCD是矩形,
∴CD=AB=,
在Rt△CDF中,cos∠DCF=,∠DCF=30°,
∴CF==2,
∵四邊形AECF是菱形,
∴CE=CF=2,
∴四邊形AECF是的面積為:ECAB=2.
科目:初中數學 來源: 題型:
【題目】某旅行社為吸引市民組團去天水灣風景區旅游,推出如下收費標準:
如果人數不超過
人,人均旅游費用為
元;
如果人數超過
人,每增加
人,人均旅游費用降低
元,但人均旅游費用不得低于
元.
某單位共付給該旅行社旅游費用元,問:該單位這次共有多少員工去天水灣風景區旅游?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面內有一等腰Rt△ABC,∠ACB=90°,點A在直線l上.過點C作CE⊥1于點E,過點B作BF⊥l于點F,測量得CE=3,BF=2,則AF的長為( 。
A. 5 B. 4 C. 8 D. 7
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,過點A(0,6)的直線AB與直線OC相交于點C(2,4)動點P沿路線O→C→B運動.(1)求直線AB的解析式;(2)當△OPB的面積是△OBC的面積的時,求出這時點P的坐標;(3)是否存在點P,使△OBP是直角三角形?若存在,直接寫出點P的坐標,若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點M,N分別是正方形ABCD的邊BC,CD上的點,且BM=CN, AM與BN交于點P,試探索AM與BN的關系.
(1)數量關系_____________________,并證明;
(2)位置關系_____________________,并證明.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】沐陽特產專賣店銷售某種物產,其進價為每千克元,若按每千克
元出售,則平均每天可售出
千克,后來經過市場調查發現,單價每降低
元,平均每天的銷售量增加
千克,若專賣店銷售這種特產平均每天獲利
元,且銷量盡可能大,則每千克特產應定價為多少元?
解:方法
:設每千克特產應降價
元,由題意,得方程為: ________;
方法:設每千克特產降價后定價為
元,由題意,得方程為:________.
請你選擇其中一種方法完成解答.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,點P為定角∠AOB的平分線上的一個定點,且∠MPN與∠AOB互補,若∠MPN在繞點P旋轉的過程中,其兩邊分別與OA、OB相交于M、N兩點,則以下結論:(1)PM=PN恒成立;(2)OM+ON的值不變;(3)四邊形PMON的面積不變;(4)MN的長不變,其中正確的個數為( 。
A. 4B. 3C. 2D. 1
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知函數y=x+1的圖象與y軸交于點A,一次函數y=kx+b的圖象經過點B(0,﹣1),與x軸以及y=x+1的圖象分別交于點C、D,且點D的坐標為(1,n),
(1)求一次函數y=kx+b的函數關系式
(2)求四邊形AOCD的面積;
(3)是否存在y軸上的點P,使得以BD為底的△PBD等腰三角形?若存在求出點P的坐標;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABC中,AB=AC,射線AP在△ABC的外側,點B關于AP的對稱點為D,連接CD交射線AP于點E,連接BE.
(1)根據題意補全圖形;
(2)求證:CD=EB+EC;
(3)求證:∠ABE=∠ACE.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com