分析 (1)由AB∥x軸,可找出四邊形ABCO為長方形,再根據△APB為等腰三角形可得知∠OAP=45°,從而得出△AOP為等腰直角三角形,由此得出結論;
(2)由全等三角形的性質和等腰三角形的性質可得出結論,注意分類討論.
解答 解:(1)過點B作BC⊥x軸于點C,如圖所示.
∵AO⊥x軸,BC⊥x軸,且AB∥x軸,
∴四邊形ABCO為長方形,
∴AO=BC=4.
∵△APB為等腰直角三角形,
∴AP=BP,∠PAB=∠PBA=45°,
∴∠OAP=90°-∠PAB=45°,
∴△AOP為等腰直角三角形,
∴OA=OP=4.
∴t=4÷1=4(秒),
故t的值為4.
(2)當t=3時,M、P、B為頂點的三角形和△ABP全等,可得:
點M的坐標為(4,7),(6,-4),(10,-1),(0,4).
點評 本題考查了長方形的判定及性質、全等三角形的判定及性質、坐標與圖形性質、等腰三角形的性質等知識;本題綜合性強,有一定難度,證明三角形全等是解決問題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{3}{5}$ | B. | $\frac{4}{5}$ | C. | $\frac{3}{4}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com