【題目】四邊形ABCD中,∠A=145°,∠D=75°.
(1)如圖1,若∠B=∠C,試求出∠C的度數;
(2)如圖2,若∠ABC的角平分線BE交DC于點E,且BE∥AD,試求出∠C的度數;
(3)①如圖3,若∠ABC和∠BCD的角平分線交于點E,試求出∠BEC的度數.
②在①的條件下,若延長BA、CD交于點F(如圖4),將原來條件“∠A=145°,∠D=75°”改為“∠F=40°”,其他條件不變,∠BEC的度數會發生變化嗎?若不變,請說明理由;若變化,求出∠BEC的度數.
【答案】(1)∠C=70°;(2)∠C=70°;(3)①∠BEC=110°;②不變.∠BEC=110°.
【解析】
(1)先根據四邊形內角和等于360°求出∠B+∠C的度數,再除以2即可求解;
(2)先根據平行線的性質得到∠ABE的度數,再根據角平分線的定義得到∠ABC的度數,再根據四邊形內角和等于360°求出∠BEC的度數;
(3)①先根據四邊形內角和等于360°求出∠ABC+∠BCD的度數,再根據角平分線的定義得到∠EBC+∠ECB的度數,再根據三角形內角和等于180°求出∠BEC的度數;
②先根據三角形內角和等于180°求出∠FBC+∠BCF的度數,再根據角平分線的定義得到∠EBC+∠ECB的度數,再根據三角形內角和等于180°求出∠BEC的度數.
(1)∵四邊形ABCD中,∠A=145°,∠D=75°,
∴∠B+∠C=360°-(145°+75°)=140°,
∵∠B=∠C,
∴∠C=70°;
(2)∵BE∥AD,
∴∠ABE=180°-∠A=180°-145°=35°,
∵∠ABC的角平分線BE交DC于點E,
∴∠ABC=70°,
∴∠C=360°-(145°+75°+70°)=70°;
(3)①∵四邊形ABCD中,∠A=145°,∠D=75°,
∴∠B+∠C=360°-(145°+75°)=140°,
∵∠ABC和∠BCD的角平分線交于點E,
∴∠EBC+∠ECB=70°,
∴∠BEC=180°-70°=110°;
②不變.
∵∠F=40°,
∴∠FBC+∠BCF=180°-40°=140°,
∵∠ABC和∠BCD的角平分線交于點E,
∴∠EBC+∠ECB=70°,
∴∠BEC=180°-70°=110°.
科目:初中數學 來源: 題型:
【題目】如圖1,二次函數y1=(x﹣2)(x﹣4)的圖象與x軸交于A、B兩點(點A在點B的左側),其對稱軸l與x軸交于點C,它的頂點為點D.
(1)寫出點D的坐標 .
(2)點P在對稱軸l上,位于點C上方,且CP=2CD,以P為頂點的二次函數y2=ax2+bx+c(a≠0)的圖象過點A.
①試說明二次函數y2=ax2+bx+c(a≠0)的圖象過點B;
②點R在二次函數y1=(x﹣2)(x﹣4)的圖象上,到x軸的距離為d,當點R的坐標為 時,二次函數y2=ax2+bx+c(a≠0)的圖象上有且只有三個點到x軸的距離等于2d;
③如圖2,已知0<m<2,過點M(0,m)作x軸的平行線,分別交二次函數y1=(x﹣2)(x﹣4)y2=ax2+bx+c(a≠0)的圖象于點E、F、G、H(點E、G在對稱軸l左側),過點H作x軸的垂線,垂足為點N,交二次函數y1=(x﹣2)(x﹣4)的圖象于點Q,若△GHN∽△EHQ,求實數m的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】隨著科技的發展,某快遞公司為了提高分揀包裹的速度,使用機器人代替人工進行包裹分揀,若甲機器人工作,乙機器人工作
,一共可以分揀700件包裹;若甲機器人工作
,乙機器人工作
,一共可以分揀650件包裹.
(1)求甲、乙兩機器人每小時各分揀多少件包裹;
(2)去年“雙十一”期間,快遞公司的業務量猛增,為了讓甲、乙兩機器人每天分揀包裹的總數量不低于2250件,則它們每天至少要一起工作多少小時?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】尺規作圖與圖形變換
(尺規作圖)(不寫作法,保留作圖痕跡)
如圖,一輛汽車在直線形的公路上由點A向點B行駛,M,N 是分別位于公路兩側的村莊.
(1)在圖1中求作一點P,使汽車行駛到此位置時,與村莊M,N的距離之和最小;
(2)在圖2中求作一點Q,使汽車行駛到此位置時,與村莊 M,N 的距離相等.
(圖形變換)
如圖3所示,在正方形網格中,△ABC為格點三角形(即三角形的頂點都在格點上).
(3)把△ABC 沿 BA 方向平移后,點 A 移到點,請你在網格中畫出平移后得到的
;
(4)把繞點
按逆時針方向旋轉 90°,請你在網格中畫出旋轉后的
.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】2016年3月國際風箏節期間,王大伯決定銷售一批風箏,經市場調研:蝙蝠型風箏進價每個為10元,當售價每個為12元時,銷售量為180個,若售價每提高1元,銷售量就會減少10個,請回答以下問題:
(1)用表達式表示蝙蝠型風箏銷售量y(個)與售價x(元)之間的函數關系(12≤x≤30);
(2)王大伯為了讓利給顧客,并同時獲得840元利潤,售價應定為多少?
(3)當售價定為多少時,王大伯獲得利潤W最大,最大利潤是多少?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,菱形紙片ABCD中,∠A=60°,折疊菱形紙片ABCD,使點C落在DP(P為AB的中點)所在的直線上,得到經過點D的折痕DE,若菱形邊長為1,則點E到CD的距離為_____.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖,已知直線a∥b,點A在直線a上,點B. C在直線b上,點P在線段AB上,∠1=70,∠2=100,求∠PCB的度數.
(2)下表是某商行一種商品的銷售情況,該商品原價為560元,隨著不同幅度的降價(單位:元),日銷量(單位:件)發生相應變化如下表:
降價 | 5 | 10 | 15 | 20 | 25 | 30 | 35 |
日銷量 | 78 | 81 | 84 | 87 | 90 | 93 | 96 |
①根據表格所列出的變化關系,請你估計降價之前的日銷量是多少件?
②根據表格所列出的變化關系,請直接寫出與
的關系式.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知:如圖,正比例函數y=ax的圖象與反比例函數y=的圖象交于點A(3,2)
(1)試確定上述正比例函數和反比例函數的表達式;
(2)根據圖象回答,在第一象限內,當x取何值時,反比例函數的值大于正比例函數的值?
(3)點M(m,n)是反比例函數圖象上的一動點,其中0<m<3,過點M作直線MB∥x軸,交y軸于點B;過點A作直線AC∥y軸交x軸于點C,交直線MB于點D.當四邊形OADM的面積為6時,請判斷線段BM與DM的大小關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com