分析 將等式進行化簡即可求出ab=1
解答 解:∵$\frac{1}{1+a}$+$\frac{1}{1+b}$=$\frac{2}{1+ab}$,a+b≠0
∴左邊=$\frac{1+b+1+a}{(1+a)(1+b)}$=$\frac{2+a+b}{(1+a)(1+b)}$=$\frac{2}{1+ab}$=右邊
∴(2+a+b)(1+ab)=2(1+a)(1+b)
∴2+2ab+a+a2b+b+ab2=2(1+b+a+ab)=2+2b+2a+2ab
∴a2b+ab2=a+b
∴ab(a+b)=a+b
∴ab=1
點評 本題考查等式的證明,涉及分式運算以及整式運算的法則,屬于中等題型.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com