分析 (1)在直角三角形中,由題中條件可得∠ABD=EAC,又有AB=AC,則有一個角及斜邊相等,則可判定Rt△BAD≌Rt△AEC,由三角形全等可得三角形對應邊相等,進而通過線段之間的轉化,可得出結論;
(2)由題中條件同樣可得出Rt△BAD≌Rt△AEC,得出對應線段相等,進而可得線段之間的關系.
解答 (1)證明:∵∠BAC=90°,BD⊥AE,CE⊥AE,
∴∠ABD+∠BAD=90°,∠BAD+∠EAC=90,
∴∠ABD=∠EAC.
在Rt△BDA和Rt△AEC中,
∵$\left\{\begin{array}{l}{∠ABD=∠EAC}\\{∠ADB=∠AEC=90°}\\{AB=AC}\end{array}\right.$,
∴Rt△BAD≌Rt△AEC(AAS),
∴BD=AE,AD=CE,BD=AE,
∴BD=AE=AD+DE=CE+DE;
(2)解:BD=DE-CE.
理由:∵∠BAC=90°,BD⊥AE,CE⊥AE
∴∠ABD+∠BAD=90°,∠BAD+∠EAC=90°,
∴∠ABD=∠EAC,
在Rt△BDA和Rt△AEC中,
∵$\left\{\begin{array}{l}{∠ABD=∠EAC}\\{∠ADB=∠CEA}\\{AB=AC}\end{array}\right.$,
∴Rt△BAD≌Rt△AEC(AAS),
∴BD=AE,AD=CE,
∴BD=AE=DE-AD=DE-CE.
點評 本題考查三角形全等的判定方法,判定兩個三角形全等的一般方法有:SSS、SAS、SSA、HL.注意:AAA、SSA不能判定兩個三角形全等,判定兩個三角形全等時,必須有邊的參與,若有兩邊一角對應相等時,角必須是兩邊的夾角.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com