由折疊的性質、矩形的性質與角平分線的性質,可證得CF=FM=DF;
易求得∠BFE=∠BFN,則可得BF⊥EN;易證得△BEN是等腰三角形,但無法判定是等邊三角形;易求得BM=2EM=2DE,即可得EB=3EM,根據等高三角形的面積比等于對應底的比,即可求得答案.
解:∵四邊形ABCD是矩形,
∴∠D=∠BCD=90°,
由折疊的性質可得:∠EMF=∠D=90°,DF=MF,
即FM⊥BE,CF⊥BC,
∵BF平分∠EBC,
∴CF=MF,
∴DF=CF;故①正確;

∵∠BFM=90°﹣∠EBF,∠BFC=90°﹣∠CBF,
∴∠BFM=∠BFC,
∵∠MFE=∠DFE=∠CFN,
∴∠BFE=∠BFN,
∵∠BFE+∠BFN=180°,
∴∠BFE=90°,
即BF⊥EN,故②正確;
∵在△DEF和△CNF中,

∴△DEF≌△CNF(ASA),
∴EF=FN,
∴BE=BN,
但無法求得△BEN各角的度數,
∴△BEN不一定是等邊三角形;故③錯誤;
∵∠BFM=∠BFC,BM⊥FM,BC⊥CF,
∴BM=BC=AD=2DE=2EM,
∴BE=3EM,
∴S
△BEF=3S
△EMF=3S
△DEF;
故④正確.
故選B.