【題目】某中學九年級數學興趣小組,在廣場上測量位于正東方向的某建筑物AC的高度,如圖所示,他先在點B測得該建筑物頂點A的仰角為30°,然后向正東方向前行62米,到達D點,再測得該建筑物頂點A的仰角為60°(B、C、D三點在同一水平面上,且測量儀的高度忽略不計).求該建筑物AC的高度(結果精確的1米,參考數值:)
科目:初中數學 來源: 題型:
【題目】數軸上兩點間的距離等于這兩個點所對應的數的差的絕對值.例:點A、B在數軸上對應的數分別為a、b,則A、B兩點間的距離表示為AB=|a﹣b|.根據以上知識解題:
(1)點A在數軸上表示3,點B在數軸上表示2,那么AB=_______.
(2)在數軸上表示數a的點與﹣2的距離是3,那么a=______.
(3)如果數軸上表示數a的點位于﹣4和2之間,那么|a+4|+|a﹣2|=______.
(4)對于任何有理數x,|x﹣3|+|x﹣6|是否有最小值?如果有,直接寫出最小值.如果沒有.請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】把下列各數分別填入相應的大括號里(將各數用逗號分開):
-8,0.275,,0,-1.04,-(-3),-
,|-2|.
(1)正數集合:{ …};
(2)分數集合:{ …};
(3)負整數集合:{ …};
(4)非負數集合:{ …}.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】撫順某中學為了解八年級學生的體能狀況,從八年級學生中隨機抽取部分學生進行體能測試,測試結果分為A,B,C,D四個等級.請根據兩幅統計圖中的信息回答下列問題:
(1)本次抽樣調查共抽取了多少名學生?
(2)求測試結果為C等級的學生數,并補全條形圖;
(3)若該中學八年級共有700名學生,請你估計該中學八年級學生中體能測試結果為D等級的學生有多少名?
(4)若從體能為A等級的2名男生2名女生中隨機的抽取2名學生,做為該校培養運動員的重點對象,請用列表法或畫樹狀圖的方法求所抽取的兩人恰好都是男生的概率.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在△ABC中,∠ABC=90°,⊙O是△ABC外接圓,點D是圓上一點,點D、B分別在AC兩側,且BD=BC,連接AD、BD、OD、CD,延長CB到點P,使∠APB=∠DCB.
(1)求證:AP為⊙O的切線;
(2)若⊙O的半徑為1,當△OED是直角三角形時,求△ABC的面積;
(3)若△BOE、△DOE、△AED的面積分別為a、b、c,試探究a、b、c之間的等量關系式,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】一個問題解決往往經歷發現猜想——探索歸納——問題解決的過程,下面結合一道幾何題來體驗一下.
(發現猜想)(1)如圖①,已知∠AOB=70°,∠AOD=100°,OC為∠BOD的角平分線,則∠AOC的度數為 ;.
(探索歸納)(2)如圖①,∠AOB=m,∠AOD=n,OC為∠BOD的角平分線. 猜想∠AOC的度數(用含m、n的代數式表示),并說明理由.
(問題解決)(3)如圖②,若∠AOB=20°,∠AOC=90°,∠AOD=120°.若射線OB繞點O以每秒20°逆時針旋轉,射線OC繞點O以每秒10°順時針旋轉,射線OD繞點O每秒30°順時針旋轉,三條射線同時旋轉,當一條射線與直線OA重合時,三條射線同時停止運動. 運動幾秒時,其中一條射線是另外兩條射線夾角的角平分線?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,是正方形
的邊
上的動點,
是邊
延長線上的一點,且
,
,設
,
.
(1)當是等邊三角形時,求
的長;
(2)求與
的函數解析式,并寫出它的定義域;
(3)把沿著直線
翻折,點
落在點
處,試探索:
能否為等腰三角形?如果能,請求出
的長;如果不能,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某地2016年為做好“精準扶貧”,投人資金1280萬元用于異地安置,并規劃投入資金逐年增加,預計2018年投人的資金將比2016年多1600萬元.
(1)從2016年到2018年,該地投人異地安置資金的年平均增長率為多少?
(2)在2016年異地安置的具體實施中,該地另外投入資金不低于500萬元用于優先搬遷租房獎勵,規定前1000戶(含第1000戶)每戶每天獎勵8元,1000戶以后每戶每天獎勵5元,按租房400天計算,試求2016年該地至少有多少戶享受到優先搬遷租房獎勵.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在社會實踐活動中,某校甲、乙、丙三位同學一同調查了高峰時段北京的二環路、三環路、四環路的車流量(每小時通過觀測點的汽車車輛數),三位匯報高峰時段的車流量情況如下:
甲同學說:“二環路車流量為每小時10000輛.”
乙同學說:“四環路比三環路車流量每小時多2000輛.”
丙同學說:“三環路車流量的3倍與四環路車流量的差是二環路車流量的2倍.”
請你根據他們提供的信息,求出高峰時段三環路、四環路的車流量各是多少?
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com