科目:初中數學 來源: 題型:
以下是小辰同學閱讀的一份材料和思考:
五個邊長為1的小正方形如圖①放置,用兩條線段把它們分割成三部分(如圖②),移動其中的兩部分,與未移動的部分恰好拼接成一個無空隙無重疊的新正方形(如圖③).
小辰閱讀后發現,拼接前后圖形的面積相等,若設新的正方形的邊長為x(x>0),可得x2=5,x=.由此可知新正方形邊長等于兩個小正方形組成的矩形的對角線長.
參考上面的材料和小辰的思考方法,解決問題:
五個邊長為1的小正方形(如圖④放置),用兩條線段把它們分割成四部分,移動其中的兩部分,與未移動的部分恰好拼接成一個無空隙無重疊的矩形,且所得矩形的鄰邊之比為1:2.
具體要求如下:
(1)設拼接后的長方形的長為a,寬為b,則a的長度為 ;
(2)在圖④中,畫出符合題意的兩條分割線(只要畫出一種即可);
(3)在圖⑤中,畫出拼接后符合題意的長方形(只要畫出一種即可)
![]() |
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,已知A、B、C分別是⊙O上的點,∠B=60°,P是直徑CD的延長線上的一點,且AP=AC.
(1)求證:AP與⊙O相切;
(2)如果AC=3,求PD的長.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com