【題目】計算:(1);
(2);
(3)(m為正整數).
【答案】(1)0;(2)a12-4nb4m;(3)0.
【解析】
(1)運用同底數的冪的乘法法則,然后利用冪的乘方法則計算即可;
(2) 首先利用積的乘方以及冪的乘方法則計算,然后利用同底數的冪的乘法法則計算,最后根據負指數次冪的意義即可;
(3) 將原式中的各因式化為相同底數,再進行加減.
(1)原式=x8+x8-x·x4·x3+x3·x4×(-x)
=x8+x8-x8-x8
=0.
(2)原式=(a6-2nb2m-2)(16a6-2nb2m+2)
=a12-4nb4m.
(3)原式=22m-1×24×(23)m-1+(-22m)×23m
=22m+3×23m-3-25m
=25m-25m
=0.
科目:初中數學 來源: 題型:
【題目】某超市計劃購進一批甲、乙兩種玩具,已知5件甲種玩具的進價與3件乙種玩具的進價的和為231元,2件甲種玩具的進價與3件乙種玩具的進價的和為141元.
(1)求每件甲種、乙種玩具的進價分別是多少元;
(2)近期批發商有優惠活動,如圖所示,如果超市決定在甲、乙兩種玩具中選購其中一種,且數量超過20件,請你幫助超市判斷購進哪種玩具更省錢.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】湖州素有魚米之鄉之稱,某水產養殖大戶為了更好地發揮技術優勢,一次性收購了
淡水魚,計劃養殖一段時間后再出售.已知每天放養的費用相同,放養
天的總成本為
萬元;放養
天的總成本為
萬元(總成本=放養總費用+收購成本).
(1)設每天的放養費用是 萬元,收購成本為
萬元,求
和
的值;
(2)設這批淡水魚放養 天后的質量為
(
),銷售單價為
元/
.根據以往經驗可知:
與
的函數關系為
;
與
的函數關系如圖所示.
①分別求出當 和
時,
與
的函數關系式;
②設將這批淡水魚放養 天后一次性出售所得利潤為
元,求當
為何值時,
最大?并求出最大值.(利潤=銷售總額-總成本)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC為等邊三角形,AE=CD,AD、BE相交于點F.
(1)求證:△ABE≌△CAD;
(2)若BP⊥AD于點P,PF=9,EF=3,求AD的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=30°,將△ABC繞點B旋轉α(0<α<60°)到△A′BC′,邊AC和邊A′C′相交于點P,邊AC和邊BC′相交于Q.當△BPQ為等腰三角形時,則α=__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】小林在某商店購買商品A、B共三次,只有一次購買時,商品A、B同時打折(折扣相同),其余兩次均按標價購買.三次購買商品A、B的數量和費用如下表:
購買商品A的數量/個 | 購買商品B的數量/個 | 購買總費用/元 | |
第一次購物 | 6 | 5 | 1140 |
第二次購物 | 3 | 7 | 1110 |
第三次購物 | 9 | 8 | 1062 |
(1)小林以折扣價購買商品A、B是第 次購物;
(2)求出商品A、B的標價;
(3)若商品A、B的折扣相同,問商店是打幾折出售這兩種商品的?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知DE∥BC, AB∥CD,E為AB的中點,∠A=∠B.下列結論:①CD=AE;②AC=DE;③AC平分∠BCD;④O點是DE的中點;⑤AC=AB.其中正確的是( 。
A. ①②④ B. ①③⑤ C. ②③④ D. ②④⑤
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,△ABC在平面直角坐標系中的位置如圖所示.
(1)把△ABC向下平移2個單位長度得到△A1B1C1,請畫出△A1B1C1;
(2)請畫出△A1B1C1關于y軸對稱的△A2B2C2,并寫出A2的坐標;
(3)求△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,拋物線y=ax2+bx+c經過點A(﹣3,0),B(1,0),C(0,﹣3).
(1)求拋物線的解析式;
(2)若點P為第三象限內拋物線上的一點,設△PAC的面積為S,求S的最大值并求出此時點P的坐標;
(3)設拋物線的頂點為D,DE⊥x軸于點E,在y軸上是否存在點M,使得△ADM是直角三角形?若存在,請直接寫出點M的坐標;若不存在,請說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com