分析 (1)連接CD,如圖,利用圓周角定理得到∠CAD+∠D=90°,再∠D=∠PBA,加上∠PAC=∠PBA,所以∠PAD=90°,然后根據切線的判定定理即可得到結論;
(2)證明△ACG∽△ABC,再利用相似比得到AC2=AG•AB=12,從而得到AC=2$\sqrt{3}$.
解答 (1)證明:連接CD,如圖,∵AD是⊙O的直徑,
∴∠ACD=90°,
∴∠CAD+∠D=90°,
∵∠PAC=∠PBA,
∠D=∠PBA,
∴∠CAD+∠PAC=90°,即∠PAD=90°,
∴PA⊥AD,
∴PA是⊙O的切線;
(2)解:∵CF⊥AD,
∴∠ACF+∠CAF=90°,∠CAD+∠D=90°,
∴∠ACF=∠D,
∴∠ACF=∠B,
而∠CAG=∠BAC,
∴△ACG∽△ABC,
∴AC:AB=AG:AC,
∴AC2=AG•AB=12,
∴AC=2$\sqrt{3}$.
點評 本題考查了切線的判定:經過半徑的外端且垂直于這條半徑的直線是圓的切線.當已知條件中明確指出直線與圓有公共點時,常連接過該公共點的半徑,證明該半徑垂直于這條直線.也考查了圓周角定理.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
組號 | 分組 | 頻數 |
一 | 9.6≤x<9.7 | 1 |
二 | 9.7≤x<9.8 | 2 |
三 | 9.8≤x<9.9 | a |
四 | 9.9≤x<10 | 8 |
五 | x=10 | 3 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com