科目:初中數學 來源: 題型:
如圖,在?ABCD中,AB=6cm,AD=9cm,∠BAD的平分線交BC于點E,交DC的延長線于點F,BG⊥AE,垂足為G,BG=4cm,則EF+CF的長為 ;
![]() |
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,矩形ABCD中,O為AC中點,過點O的直線分別與AB,CD交于點E,F,連接BF交AC于點M,連接DE,BO.若∠COB=60°,FO=FC,則下列結論:
①FB⊥OC,OM=CM;
②△EOB≌△CMB;
③四邊形EBFD是菱形;
④MB:OE=3:2.
其中正確結論的個數是( )
| A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在等邊△ABC中,點D在直線BC上,連接AD,作∠ADN=60°,直線DN交射線AB于點E,過點C作CF∥AB交直線DN于點F.
(1)當點D在線段BC上,∠NDB為銳角時,如圖①,求證:CF+BE=CD;
(提示:過點F作FM∥BC交射線AB于點M.)
(2)當點D在線段BC的延長線上,∠NDB為銳角時,如圖②;當點D在線段CB的延長線上,∠NDB為鈍角時,如圖③,請分別寫出線段CF,BE,CD之間的數量關系,不需要證明;
(3)在(2)的條件下,若∠ADC=30°,S△ABC=4,則BE= 8 ,CD= 4或8 .
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,在△ABC中,點D,E,F分別是AB,BC,CA的中點,AH是邊BC上的高.
(1)求證:四邊形ADEF是平行四邊形;
(2)求證:∠DHF=∠DEF.
查看答案和解析>>
科目:初中數學 來源: 題型:
如圖,直角三角板ABC的斜邊AB=12 cm,∠A=30°,將三角板ABC繞C順時針旋轉90°至三角板A′B′C′的位置后,再沿CB方向向左平移,使點B′落在原三角板ABC的斜邊AB上,則三角板A′B′C′平移的距離為
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com