分析 (1)易證∠CFD=90°,∠CEB=90°,CE=CF,即可證明Rt△BCE≌Rt△DCF;
(2)由Rt△ACF≌Rt△ACE(HL),推出AF=AE,由Rt△BCE≌Rt△DCF,推出DF=BE,即可推出AB-AD=(AE+EB)-(AF-DF)=2DF,
(3)利用(2)中結論,求出EB,在Rt△EBC中,利用勾股定理即可解決問題.
解答 (1)證明:∵AC平分∠BAD,CE⊥AB于E,CF⊥AD于F,
∴∠CFD=90°,∠CEB=90°,CE=CF,
在Rt△BCE和Rt△DCF中,
$\left\{\begin{array}{l}{CE=CF}\\{BC=CD}\end{array}\right.$,
∴Rt△BCE≌Rt△DCF(HL);
(2)解:結論:AB-AD=2DF,
理由:∵AC平分∠BAD,CF⊥AF,CE⊥AE,
∴CF=CE,
在Rt△ACF和Rt△ACE中,
$\left\{\begin{array}{l}{AC=AC}\\{CF=CE}\end{array}\right.$,
∴Rt△ACF≌Rt△ACE(HL),
∴AF=AE,
∵Rt△BCE≌Rt△DCF,
∴DF=BE,
∴AB-AD=(AE+EB)-(AF-DF)=2DF,
(3)解:∵AB=15,AD=7,
∴2DF=AB-AD=8,
∴DF=EB=4,
在Rt△BCE中,CE=$\sqrt{B{C}^{2}-B{E}^{2}}$=$\sqrt{{5}^{2}-{4}^{2}}$=3.
∴EC=3.
點評 本題考查了全等三角形的判定,考查了全等三角形對應邊相等的性質,本題中求證Rt△BCE≌Rt△DCF和Rt△ACF≌Rt△ACE是解題的關鍵.
科目:初中數學 來源: 題型:填空題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 1個 | B. | 2個 | C. | 3個 | D. | 4個 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
星期 | 一 | 二 | 三 | 四 | 五 |
漲跌(與前一交易日比較) | +4 | +4.5 | -1 | -2.5 | -4 |
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com