分析 (1)根據等邊三角形的性質,利用SAS證明△ABQ≌△CAP;
(2)由△ABQ≌△CAP根據全等三角形的性質可得∠BAQ=∠ACP,從而得到∠QMC=60°;
(3)由△ABQ≌△CAP根據全等三角形的性質可得∠BAQ=∠ACP,從而得到∠QMC=120°.
解答 (1)證明:∵△ABC是等邊三角形
∴∠ABQ=∠CAP,AB=CA,
又∵點P、Q運動速度相同,
∴AP=BQ,
在△ABQ與△CAP中,
$\left\{\begin{array}{l}{AB=CA}\\{∠ABQ=∠CAP}\\{AP=BQ}\end{array}\right.$,
∴△ABQ≌△CAP(SAS);
(2)解:點P、Q在運動的過程中,∠QMC不變.
理由:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠ACP+∠MAC,
∴∠QMC=∠BAQ+∠MAC=∠BAC=60°;
(3)解:∵△ABQ≌△CAP,
∴∠BAQ=∠ACP,
∵∠QMC=∠BAQ+∠APM,
∴∠QMC=∠ACP+∠APM=180°-∠PAC=180°-60°=120°.
故答案為:120°.
點評 本題考查了等邊三角形的性質,全等三角形的判定與性質,熟練掌握全等三角形的判定是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com