分析 (1)將△APB繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°,即將A,P,兩點(diǎn)繞B點(diǎn)順時(shí)針旋轉(zhuǎn)90°,得出△CBE即可;
(2)根據(jù)旋轉(zhuǎn)的性質(zhì),得出∠PBE=∠ABC=90°,BP=BE=2,即可證得△PBE是等腰直角三角形,從而求得PE,最后根據(jù)勾股定理的逆定理,即可得到△PEC是直角三角形;
(3)連接PE后,存在兩個(gè)直角三角形:Rt△PBE和Rt△PCE,先求得∠BEC的度數(shù),最后根據(jù)全等三角形的對(duì)應(yīng)角相等,即可得出∠APB的度數(shù).
解答 解:(1)如圖所示,△CBE即為所求;
(2)證明:∵△BEC是由△APB繞點(diǎn)B順時(shí)針?lè)较蛐D(zhuǎn)90°得到的,
∴△BEC≌△BPA,∠PBE=90°,
∴BE=BP=2,CE=PA=1,
∴△PBE是等腰直角三角形,CE2=1,
∴Rt△PBE中,PE2=PB2+BE2=4+4=8,
又∵PC=3,
∴PC2=9,
∴在△PCE中,PE2+CE2=PC2,
∴△PCE是直角三角形,且∠PEC=90°;
(3)由(2)可得,△PCE是直角三角形,△PBE是等腰直角三角形,
∴∠PEC=90°,∠BEP=45°,
∴∠BEC=90°+45°=135°,
又∵△BEC≌△BPA,
∴∠APB=∠BEC=135°.
故答案為:135°.
點(diǎn)評(píng) 本題屬于四邊形綜合題,主要考查了圖形的旋轉(zhuǎn)的性質(zhì)以及勾股定理的逆定理,正確理解旋轉(zhuǎn)中出現(xiàn)相等的角和相等的邊是解題的關(guān)鍵.要判斷一個(gè)角是不是直角,先要構(gòu)造出三角形,然后知道三條邊的大小,用較小的兩條邊的平方和與最大的邊的平方比較,如果相等,則三角形為直角三角形;否則不是.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 1:5 | B. | 1:4 | C. | 1:3 | D. | 1:2 |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | y1>y2 | B. | y1=y2 | C. | y1<y2 | D. | 不能比較 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com