分析 共有四個,由正方形的性質可知△EAB,△BCF,△EDF都是直角三角形,再根據勾股定理的逆定理可證明△BEF也是直角三角形,問題得解.
解答 解:圖中有4個直角三角形,理由如下:
∵四邊形ABCD是正方形,
∴∠A=∠ABC=∠C=∠D=90°,
∴△EAB,△BCF,△EDF都是直角三角形,
∵AB=4,AE=2,
∴BE2=20,
∵DF=1,DE=4-AE=2,
∴EF2=5,
∵CF=4-DF=3,BC=4,
∴BF2=25,
∴BF2=EF2+BE2,
∴△BEF也是直角三角形,
∴圖中有4個直角三角形.
點評 本題考查了正方形的性質以及勾股定理和其逆定理的運用,熟記正方形的性質是解題關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | 三個內角相等的三角形是等邊三角形 | |
B. | 對頂角相等 | |
C. | 三角形中,鈍角所對的邊最長 | |
D. | 全等三角形的對應角相等 |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源:2017屆江蘇省無錫市九年級下學期第一次模擬考試數學試卷(解析版) 題型:解答題
如圖,在平面直角坐標系中,O為坐標原點,△ABC的邊BC在y軸的正半軸上,點A在x軸的正半軸上,點C的坐標為(0,8),將△ABC沿直線AB折疊,點C落在x軸的負半軸D(?4,0)處.
(1)求直線AB的解析式;
(2)點P從點A出發以每秒個單位長度的速度沿射線AB方向運動,過點P作PQ⊥AB,交x軸于點Q,PR∥AC交x軸于點R,設點P運動時間為t(秒),線段QR長為d,求d與t的函數關系式(不要求寫出自變量t的取值范圍);
(3)在(2)的條件下,點N是射線AB上一點,以點N為圓心,同時經過R、Q兩點作⊙N,⊙N交y軸于點E,F.是否存在t,使得EF=RQ?若存在,求出t的值,并求出圓心N的坐標;若不存在,說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com