【題目】已知:如圖OA平分∠BAC,∠1=∠2.
求證:AO⊥BC.
同學甲說:要作輔助線;
同學乙說:要應用角平分線性質定理來解決:
同學丙說:要應用等腰三角形“三線合一”的性質定理來解決.
請你結合同學們的討論寫出證明過程.
科目:初中數學 來源: 題型:
【題目】給定關于 的二次函數
,
學生甲:當 時,拋物線與
軸只有一個交點,因此當拋物線與
軸只有一個交點時,
的值為3;
學生乙:如果拋物線在 軸上方,那么該拋物線的最低點一定在第二象限;
請判斷學生甲、乙的觀點是否正確,并說明你的理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某游樂場部分平面圖如圖所示,C、E、A在同一直線上,D、E、B在同一直線上,測得A處與E處的距離為80 米,C處與D處的距離為34米,∠C=90°,∠ABE=90°,∠BAE=30°.( ≈1.4,
≈1.7)
(1)求旋轉木馬E處到出口B處的距離;
(2)求海洋球D處到出口B處的距離(結果保留整數).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】已知,如圖:長方形ABCD中,點E為BC邊的中點,將D折起,使點D落在點E處.
(1)請你用尺規作圖畫出折痕和折疊后的圖形.(不要求寫已知,求作和作法,保留作圖痕跡)
(2)若折痕與AD、BC分別交于點M、N,與DE交于點O,求證△MDO≌△NEO.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在平面直角坐標系中,Rt△ABC的三個頂點分別是A(-3,2),B(0,4),C(0,2).
(1)將△ABC以點C為旋轉中心旋轉180°,畫出旋轉后對應的△A1B1C;平移△ABC,若點A的對應點A2的坐標為(0,-4),畫出平移后對應的△A2B2C2;
(2)若將△A1B1C繞某一點旋轉可以得到△A2B2C2 , 請直接寫出旋轉中心的坐標;
(3)在x軸上有一點P,使得PA+PB的值最小,請直接寫出點P的坐標.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】閱讀:已知a+b=﹣4,ab=3,求a2+b2的值.
解:∵a+b=﹣4,ab=3,
∴a2+b2=(a+b)2﹣2ab=(﹣4)2﹣2×3=10.
請你根據上述解題思路解答下面問題:
(1)已知a﹣b=﹣3,ab=﹣2,求(a+b)(a2﹣b2)的值.
(2)已知a﹣c﹣b=﹣10,(a﹣b)c=﹣12,求(a﹣b)2+c2的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在□ABCD中,∠DAB的平分線交CD于E點,且DE=5,EC=8.
(1)求□ABCD的周長;
(2)連結AC,若AC=12,求□ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,已知直線,把
的直角三角板
的直角頂點
放在直線
上.將直角三角板
在平面內繞點
任意轉動,若轉動的過程中,直線
與直線
的夾角為60°,則
的度數為___.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】提出問題:
(1)如圖,我們將圖(1)所示的凹四邊形稱為“鏢形”.在“鏢形”圖中,與
、
、
的數量關系為____.
(2)如圖(2),已知平分
,
,
,求
的度數.
由(1)結論得:
所以 即
因為
所以
所以.
解決問題:
(1)如圖(3),直線平分
,
平分
的外角
,猜想
與
、
的數量關系是______;
(2)如圖(4),直線平分
的外角
,
平分
的外角
,猜想
與
、
的數量關系,并說明理由.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com