【題目】如圖,三角形紙片ABC中,AB=AC,∠BAC=120°,BC=14cm,折疊紙片,使點C和點A重合,折痕與AC,BC交于點D和點E;則折痕DE的長為_____.
【答案】cm.
【解析】
由題意可得∠B=∠C=30°,由折疊可得AE=EC,∠EAC=∠C=30°,∠ADE=∠EDC=90°,則∠BAE=90°,根據30度所對的直角邊等于斜邊的一半,可得BE=2AE,
即可求EC的長度,再根據30度所對的直角邊等于斜邊的一半,可求DE的長度.
解:∵AB=AC,∠BAC=120°,
∴∠B=∠C=30°,
∵折疊,
∴∠EAC=∠C=30°,∠ADE=∠CDE=90°,AE=EC,
∵∠BAE=∠BAC﹣∠EAC,
∴∠BAE=90°,且∠B=30°,
∴BE=2AE,
∵BC=EC+BE=14,
∴EC=
∵∠C=30°,∠EDC=90°
∴CE=2DE
∴DE=
故答案為cm.
科目:初中數學 來源: 題型:
【題目】如圖,已知△ABC中BC邊上的垂直平分線DE與∠BAC得平分線交于點E,EF⊥AB交AB的延長線于點F,EG⊥AC交于點G.
求證:(1)BF=CG;(2)AF=(AB+AC).
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在Rt△ABC中,∠ACB=90°,BE平分∠ABC,D是邊AB上一點,以BD為直徑的⊙O經過點E,且交BC于點F.
(1)求證:AC是⊙O的切線;
(2)若BF=6,⊙O的半徑為5,求CE的長.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在直角坐標系中,△ABC的三個頂點都在坐標軸上,A,B兩點關于y軸對稱,點C是y軸正半軸上一個動點,AD是角平分線.
(1)如圖1,若∠ACB=90°,直接寫出線段AB,CD,AC之間數量關系;
(2)如圖2,若AB=AC+BD,求∠ACB的度數;
(3)如圖2,若∠ACB=100°,求證:AB=AD+CD.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某校運動會需購買A、B兩種獎品,若購買A種獎品3件和B種獎品2件,共需60元;若購買A種獎品5件和B種獎品3件,共需95元.
(1)求A、B兩種獎品的單價各是多少元?
(2)學校計劃購買A、B兩種獎品共100件,且A種獎品的數量不大于B種獎品數量的3倍,設購買A種獎品m件,購買費用為W元,寫出W(元)與m(件)之間的函數關系式.請您確定當購買A種獎品多少件時,費用W的值最少.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在如圖所示的坐標系中,△ABC的三個頂點的坐標分別為A(1,2),B(4,1),C(2,﹣2).
(1)請寫出△ABC關于x軸對稱的點A1,B1,C1的坐標;
(2)請在坐標系中作出△ABC關于y軸對稱的△A2B2C2;
(3)計算△ABC的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】函數y=x2+bx+c的圖像與x 軸交于A、B兩點,與y軸交于點C,OB=OC.點D在函數圖像上,CD//x軸,且CD=2,直線l 是拋物線的對稱軸,E是拋物線的頂點.
(1)求b、c 的值;
(2)如圖①,連接BE,線段OC 上的點F 關于直線l 的對稱點F′ 恰好在線段BE上,求點F的坐標;
(3)如圖②,動點P在線段OB上,過點P 作x 軸的垂線分別與BC交于點M,與拋物線交于點N.試問:拋物線上是否存在點Q,使得△PQN與△APM的面積相等,且線段NQ的長度最。咳绻嬖,求出點Q的坐標;如果不存在,說明理由.
圖 ① 圖②
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】(1)如圖1,在平面直角坐標系中,已知△ABC的三個頂點的坐標分別為A(-3,5),B(-2,1),C(-1,3).
①畫出△ABC關于x軸的對稱圖形△A1B1C1;
②畫出△A1B1C1沿x軸向右平移4個單位長度后得到的△A2B2C2;
③如果AC上有一點M(a,b)經過上述兩次變換,那么對應A2C2上的點M2的坐標是 .
(2)請在圖2用無刻度的直尺在圖中以AB為一邊畫一個面積為18的長方形ABMN.(不要求寫畫法,但要保留畫圖痕跡)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,△ABE、△ADC和△ABC分別是關于AB,AC邊所在直線的軸對稱圖形,若∠1:∠2:∠3=7:2:1,則∠α的度數為( 。
A.126°B.110°C.108°D.90°
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com