試題分析:(1)連接OC,由OA=OC可以得到∠OAC=∠OCA,然后利用角平分線的性質可以證明∠DAC=∠OCA,接著利用平行線的判定即可得到OC∥AD,然后就得到OC⊥CD,由此即可證明直線CD與⊙O相切于C點;
(2)連接BC,根據圓周角定理的推理得到∠ACB=90°,又∠DAC=∠OAC,由此可以得到△ADC∽△ACB,然后利用相似三角形的性質即可解決問題.
(1)證明:連接OC
∵OA=OC
∴∠OAC=∠OCA
∵AC平分∠DAB
∴∠DAC=∠OAC
∴∠DAC=∠OCA
∴OC∥AD
∵AD⊥CD
∴OC⊥CD
∴直線CD與⊙O相切于點C;
(2)連接BC,則∠ACB=90°.
∵∠DAC=∠OAC,∠ADC=∠ACB=90°,
∴△ADC∽△ACB,
∴

,
∴AC
2=AD•AB,
∵⊙O的半徑為3,AD=4,
∴AB=6,
∴AC=2

.