分析 (1)根據(jù)直徑所對(duì)的圓周角等于90°,得出∠ADB=90°,再根據(jù)三角形內(nèi)角和定理和已知條件得出∠CAD+∠BAD=90°,從而得出∠BAC=90°,即可得出
AC⊥AB;
(2)根據(jù)AA得出△ADC∽△BAC,求出CA的長(zhǎng),繼而判斷∠CFA=∠CAF,利用等腰三角形的性質(zhì)得出AF的長(zhǎng)度,繼而得出DF的長(zhǎng),在Rt△AFD中利用勾股定理可得出AF的長(zhǎng).
解答 解:(1)∵AB是⊙O的直徑,
∴∠ADB=90°,
∴∠B+∠BAD=90°,
∵∠B=∠CAD,
∴∠CAD+∠BAD=90°,
∴∠BAC=90°,
∴AC⊥AB;
(2))∵BD=5,CD=4,
∴BC=9,
∵AB是⊙O的直徑,
∴∠ADB=∠ADC=90°,
∵∠B=∠CAD,∠C=∠C,
∴△ADC∽△BAC,
∴$\frac{AC}{BC}$=$\frac{CD}{AC}$,
∴AC2=BC×CD=36,
解得:AC=6,
在Rt△ACD中,AD=$\sqrt{A{C}^{2}-C{D}^{2}}$=2$\sqrt{5}$,
∵∠CAF=∠CAD+∠DAE=∠ABF+∠BAE=∠AFD,
∴CA=CF=6,
∴DF=CA-CD=2,
在Rt△AFD中,AF=$\sqrt{D{F}^{2}+A{D}^{2}}$=2$\sqrt{6}$.
點(diǎn)評(píng) 本題考查了相似三角形的判定與性質(zhì)和圓周角定理,解答本題的關(guān)鍵是熟練掌握?qǐng)A周角定理、相似三角形的判定與性質(zhì),勾股定理.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com