分析 作輔助線,構建平行線和垂線,先根據外角定理和角平分線性質得:∠BAD=∠N,由等角對等邊得:BN=AB=6,由三角函數求AE的長,根據等腰三角形三線合一得AN的長,證明△BND∽△CAD,根據線段的長設未知數列等式可得結論.
解答 解:過B作BM∥AC,交AD的延長線于點N,作BE⊥AN于E,
∵BM∥AC,
∴∠MBA=∠BAC=60°,
∵AD平分∠BAC,
∴∠BAD=$\frac{1}{2}$∠BAC=30°,
∴∠N=∠MBA-∠BAD=60°-30°=30°
∴∠BAD=∠N,
∴BN=AB=6,
在Rt△ABE中,
AE=AB•cos∠BAD=6×$\frac{\sqrt{3}}{2}$=3$\sqrt{3}$,
∴AN=2AE=6$\sqrt{3}$,
∵BM∥AC,
∴△BND∽△CAD,
∴$\frac{AD}{DN}=\frac{AC}{BN}$=$\frac{4}{6}=\frac{2}{3}$,
設AD=2x,則DN=3x,
而AD+DN=AN,
∴2x+3x=6$\sqrt{3}$,
x=$\frac{6\sqrt{3}}{5}$,
∴AD=$\frac{12\sqrt{3}}{5}$cm.
故答案為:$\frac{12\sqrt{3}}{5}$.
點評 本題考查了相似三角形的性質和判定,把求線段的長的問題轉化為求三角形相似的問題解決,正確作出輔助線是解題的關鍵.
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
科目:初中數學 來源: 題型:選擇題
A. | $\frac{1}{m}$<m<m2 | B. | m<m2<$\frac{1}{m}$ | C. | m2<m<$\frac{1}{m}$ | D. | $\frac{1}{m}$<m2<m |
查看答案和解析>>
科目:初中數學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com