【題目】如圖,已知△ABC,∠ACB=90°,BC=3,AC=4,小紅按如下步驟作圖:
①分別以A、C為圓心,以大于AC的長為半徑在AC兩邊作弧,交于兩點M、N;
②連接MN,分別交AB、AC于點D、O;
③過C作CE∥AB交MN于點E,連接AE、CD.
則四邊形ADCE的周長為( )
A. 10 B. 20 C. 12 D. 24
【答案】A
【解析】
根據題意得:MN是AC的垂直平分線,即可得AD=CD,AE=CE,然后由CE∥AB,可證得CD∥AE,繼而證得四邊形ADCE是菱形,再根據勾股定理求出AD,進而求出菱形ADCE的周長.
:∵分別以A、C為圓心,以大于 AC的長為半徑在AC兩邊作弧,交于兩點M、N,
∴MN是AC的垂直平分線,
∴AD=CD,AE=CE,
∴∠CAD=∠ACD,∠CAE=∠ACE,
∵CE∥AB,
∴∠CAD=∠ACE,
∴∠ACD=∠CAE,
∴CD∥AE,
∴四邊形ADCE是平行四邊形,
∴四邊形ADCE是菱形;
∴OA=OC=AC=2,OD=OE,AC⊥DE,
∵∠ACB=90°,
∴DE∥BC,
∴OD是△ABC的中位線,
∴OD=BC=
×3=1.5,
∴AD==2.5,
∴菱形ADCE的周長=4AD=10.
故選:A.
科目:初中數學 來源: 題型:
【題目】小明為了檢驗兩枚六個面分別刻有點數1、 2、3、4、5、6的正六面體骰子的質量是否都合格,在相同的條件下,同時拋兩枚骰子20 00 0次,結果發(fā)現兩個朝上面的點數和是7的次數為20次.你認為這兩枚骰子質量是否都合格(合格標準為:在相同條件下拋骰子時,骰子各個面朝上的機會相等)?并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在中,
,
、
的平分線分別交
、
于點
、
,
、
相交于點
,連接
.下列結論:①
;②
;③
;④點
到
三個頂點的距離相等;⑤
.其中正確的結論有( )個.
A. 1 B. 2 C. 3 D. 4
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】二次函數y=ax2+bx+c(a≠0)的圖象如圖所示,則下列結論中正確的是( )
A. c>-1 B. b>0 C. 2a+b ≠0 D. 9a2+c>3b
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某村耕地總面積為50公頃,且該村人均耕地面積y(單位:公頃/人)與總人口x(單位:人)的函數圖象如圖所示,則下列說法正確的是( )
A. 該村人均耕地面積隨總人口的增多而增多
B. 該村人均耕地面積y與總人口x成正比例
C. 若該村人均耕地面積為2公頃,則總人口有100人
D. 當該村總人口為50人時,人均耕地面積為1公頃
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,把一張矩形的紙ABCD沿對角線BD折疊,使點C落在點E處,BE與AD交于點F.
⑴求證:ΔABF≌ΔEDF;
⑵若將折疊的圖形恢復原狀,點F與BC邊上的點M正好重合,連接DM,試判斷四邊形BMDF的形狀,并說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,正方形ABCD的邊長為2,以BC為邊向正方形內作等邊△BCE,連接AE、DE.
(1)請直接寫出∠AEB的度數,∠AEB= ;
(2)將△AED沿直線AD向上翻折,得△AFD.求證:四邊形AEDF是菱形;
(3)連接EF,交AD于點 O,試求EF的長?
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在平面直角坐標系中,△ABC的位置如圖所示(每個小方格都是邊長為1個單位長度的正方形).
(1)若△ABC和△A1B1C1關于原點O成中心對稱圖形,畫出△A1B1C1;
(2)將△ABC繞著點A順時針旋轉90°,畫出旋轉后得到的△AB2C2;
(3)在x軸上存在一點P,滿足點P到點B1與點C1距離之和最小,請直接寫出P B1+ P C1的最小值為__________.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,一次函數 y=﹣x+4 的圖象與反比例 y=(k 為常數, 且 k≠0)的圖象交于 A(1,a)、B(b,1)兩點.
(1)求點 A、B 的坐標及反比例函數的表達式;
(2)在 x 軸上找一點,使 PA+PB 的值最小,求滿足條件的點 P 的坐標.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com