日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

精英家教網 > 初中數學 > 題目詳情

【題目】如圖,直線y=﹣ x+2 與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和 個單位長度/秒,設運動時間為t秒,以點A為頂點的拋物線經過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.

(1)求點A,點B的坐標;
(2)用含t的代數式分別表示EF和AF的長;
(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.

【答案】
(1)

解:在直線y=﹣ x+2 中,

令y=0可得0=﹣ x+2 ,解得x=2,

令x=0可得y=2

∴A為(2,0),B為(0,2 );


(2)

解:由(1)可知OA=2,OB=2

∴tan∠ABO= =

∴∠ABO=30°,

∵運動時間為t秒,

∴BE= t,

∵EF∥x軸,

∴在Rt△BEF中,EF=BEtan∠ABO= BE=t,BF=2EF=2t,

在Rt△ABO中,OA=2,OB=2

∴AB=4,

∴AF=4﹣2t;


(3)

解:相似.理由如下:

當四邊形ADEF為菱形時,則有EF=AF,

即t=4﹣2t,解得t=

∴AF=4﹣2t=4﹣ = ,OE=OB﹣BE=2 × =

如圖,過G作GH⊥x軸,交x軸于點H,

則四邊形OEGH為矩形,

∴GH=OE=

又EG∥x軸,拋物線的頂點為A,

∴OA=AH=2,

在Rt△AGH中,由勾股定理可得AG2=GH2+AH2=( 2+22=

又AFAB= ×4=

∴AFAB=AG,即 ,且∠FAG=∠GAB,

∴△AFG∽△AGB;


(4)

解:存在,

∵EG∥x軸,

∴∠GFA=∠BAO=60°,

又G點不能在拋物線的對稱軸上,

∴∠FGA≠90°,

∴當△AGF為直角三角形時,則有∠FAG=90°,

又∠FGA=30°,

∴FG=2AF,

∵EF=t,EG=4,

∴FG=4﹣t,且AF=4﹣2t,

∴4﹣t=2(4﹣2t),

解得t=

即當t的值為 秒時,△AGF為直角三角形,此時OE=OB﹣BE=2 t=2 × =

∴E點坐標為(0, ),

∵拋物線的頂點為A,

∴可設拋物線解析式為y=a(x﹣2)2

把E點坐標代入可得 =4a,解得a=

∴拋物線解析式為y= (x﹣2)2

即y= x2 x+


【解析】(1)在直線y=﹣ x+2 中,分別令y=0和x=0,容易求得A、B兩點坐標;(2)由OA、OB的長可求得∠ABO=30°,用t可表示出BE,EF,和BF的長,由勾股定理可求得AB的長,從而可用t表示出AF的長;(3)利用菱形的性質可求得t的值,則可求得AF=AG的長,可得到 ,可判定△AFG與△AGB相似;(4)若△AGF為直角三角形時,由條件可知只能是∠FAG=90°,又∠AFG=∠OAF=60°,由(2)可知AF=4﹣2t,EF=t,又由二次函數的對稱性可得到EG=2OA=4,從而可求出FG,在Rt△AGF中,可得到關于t的方程,可求得t的值,進一步可求得E點坐標,利用待定系數法可求得拋物線的解析式.本題為二次函數的綜合應用,涉及知識點有待定系數法、三角函數的定義、相似三角形的判定和性質、勾股定理、二次函數的對稱性等.在(2)中求得∠ABO=30°是解題的關鍵,在(3)中求得t的值,表示出AG的長度是解題的關鍵,在(4)中判斷出∠FAG為直角是解題的突破口.本題考查知識點較多,綜合性較強,難度較大.

練習冊系列答案
相關習題

科目:初中數學 來源: 題型:

【題目】1)如圖1,求證:三角形的三條角平分線相交于一點,并且這一點到三邊的距離相等;

2)如圖2,若的平分線與外角的平分線相交于點連接,若,則 度.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,等邊ABC邊長為10PAB上,QBC延長線,CQPA,過點PPEACE,過點PPFBQ,交AC邊于點F,連接PQAC于點D,則DE的長為_____

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.

(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發,沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,請在下列四個關系中,選出兩個恰當的關系作為條件,推出四邊形ABCD是平行四邊形,并予以證明.關系:①ADBC;②ABCD;③∠A=∠C;④∠B+∠C180°

1)寫出所有成立的情況(只需填寫序號);

2)選擇其中一種證明.

已知:在四邊形ABCD中,

求證:四邊形ABCD是平行四邊形.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,在平面直角坐標系中,四邊形ABCD是以AB為直徑的⊙M的內接四邊形,點A,B在x軸上,△MBC是邊長為2的等邊三角形,過點M作直線l與x軸垂直,交⊙M于點E,垂足為點M,且點D平分

(1)求過A,B,E三點的拋物線的解析式;
(2)求證:四邊形AMCD是菱形;
(3)請問在拋物線上是否存在一點P,使得△ABP的面積等于定值5?若存在,請求出所有的點P的坐標;若不存在,請說明理由.

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖(1)四邊形ABCD中,已知∠ABC+ADC180°,ABADDAAB,點ECD的延長線上,∠BAC=∠DAE

1)求證:△ABC≌△ADE

2)求證:CA平分∠BCD

3)如圖(2),設AF是△ABCBC邊上的高,求證:EC2AF

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,我們給中國象棋棋盤建立一個平面直角坐標系(每個小正方形的邊長均為),根據象棋中“馬”走“日”的規定,若“馬”的位置在圖中的點

寫出下一步“馬”可能到達的點的坐標為_ (寫出所有可能的點的坐標)

順次連接中的所有點,得到的圖形是 _圖形(填“中心對稱”或“軸對稱”;

中得到的圖形各頂點的坐標都乘以請在平面直角坐標系中畫出變化后的圖形,并與原圖形比較,形狀和大小有怎樣的變化?

查看答案和解析>>

科目:初中數學 來源: 題型:

【題目】如圖,EF是四邊形ABCD對角線AC上的兩點,ADBCDFBEAE=CF

求證:(1AFD≌△CEB

2)四邊形ABCD是平行四邊形.

查看答案和解析>>

同步練習冊答案
主站蜘蛛池模板: 久久精品久久久久 | 黄色片视频网站 | 这里只有精品在线观看 | 婷婷色网 | 黄色a一级片| 午夜免费小视频 | 日韩三级一区 | 国产免费一级 | 午夜成人在线视频 | av网站在线免费观看 | 日本黄色a级片 | 91视频在线| 国产激情综合 | 在线播放黄色 | 国产欧美日韩在线视频 | 欧美日韩网站 | 日皮视频在线观看 | 一区二区三区av | 日韩不卡在线 | 国产黄a三级三级三级看三级男男 | 国产在线不卡视频 | 亚洲第一色 | 解开岳的丰满奶罩bd | 日韩黄色在线观看 | 欧美一区二区视频在线观看 | 久久99精品久久久久久琪琪 | 在线视频日韩 | 蜜桃av一区二区三区 | 国产com | 欧美视频二区 | 成人激情综合网 | 午夜av网站 | 日韩精品第一页 | 日韩欧美在线视频观看 | 在线观看a视频 | 中文字幕第一区综合 | www.第四色| 欧美日韩精品一区二区三区 | 午夜国产福利 | 黄色大片在线 | 精品少妇一区二区三区免费观 |