【題目】已知拋物線y=a(x+3)(x﹣1)(a≠0),與x軸從左至右依次相交于A、B兩點,與y軸相交于點C,經過點A的直線y=﹣ x+b與拋物線的另一個交點為D.
(1)若點D的橫坐標為2,求拋物線的函數解析式;
(2)若在第三象限內的拋物線上有點P,使得以A、B、P為頂點的三角形與△ABC相似,求點P的坐標;
(3)在(1)的條件下,設點E是線段AD上的一點(不含端點),連接BE.一動點Q從點B出發,沿線段BE以每秒1個單位的速度運動到點E,再沿線段ED以每秒 個單位的速度運動到點D后停止,問當點E的坐標是多少時,點Q在整個運動過程中所用時間最少?
【答案】
(1)
解:∵y=a(x+3)(x﹣1),
∴點A的坐標為(﹣3,0)、點B兩的坐標為(1,0),
∵直線y=﹣ x+b經過點A,
∴b=﹣3 ,
∴y=﹣ x﹣3
,
當x=2時,y=﹣5 ,
則點D的坐標為(2,﹣5 ),
∵點D在拋物線上,
∴a(2+3)(2﹣1)=﹣5 ,
解得,a=﹣ ,
則拋物線的解析式為y=﹣ (x+3)(x﹣1)=﹣
x2﹣2
x+3
(2)
解:
作PH⊥x軸于H,
設點P的坐標為(m,n),
當△BPA∽△ABC時,∠BAC=∠PBA,
∴tan∠BAC=tan∠PBA,即 ,
∴ ,即n=﹣a(m﹣1),
∴ ,
解得,m1=﹣4,m2=1(不合題意,舍去),
當m=﹣4時,n=5a,
∵△BPA∽△ABC,
∴ ,即AB2=ACPB,
∴42=
,
解得,a1= (不合題意,舍去),a2=﹣
,
則n=5a=﹣ ,
∴點P的坐標為(﹣4,﹣ );
當△PBA∽△ABC時,∠CBA=∠PBA,
∴tan∠CBA=tan∠PBA,即 ,
∴ ,即n=﹣3a(m﹣1),
∴ ,
解得,m1=﹣6,m2=1(不合題意,舍去),
當m=﹣6時,n=21a,
∵△PBA∽△ABC,
∴ ,即AB2=BCPB,
∴42=
,
解得,a1= (不合題意,舍去),a2=﹣
,
則點P的坐標為(﹣6,﹣ ),
綜上所述,符合條件的點P的坐標為(﹣4,﹣ )和(﹣6,﹣
)
(3)
解:
作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,
則tan∠DAN= =
,
∴∠DAN=60°,
∴∠EDF=60°,
∴DE= EF,
∴Q的運動時間t= =BE+EF,
∴當BE和EF共線時,t最小,
則BE⊥DM,y=﹣4 .
【解析】(1)根據二次函數的交點式確定點A、B的坐標,求出直線的解析式,求出點D的坐標,求出拋物線的解析式;(2)作PH⊥x軸于H,設點P的坐標為(m,n),分△BPA∽△ABC和△PBA∽△ABC,根據相似三角形的性質計算即可;(3)作DM∥x軸交拋物線于M,作DN⊥x軸于N,作EF⊥DM于F,根據正切的定義求出Q的運動時間t=BE+EF時,t最小即可.本題考查的是二次函數知識的綜合運用,掌握二次函數的性質、二次函數的交點式、相似三角形的判定定理和性質定理是解題的關鍵,解答時,注意分情況討論思想的靈活運用.
【考點精析】通過靈活運用二次函數的圖象和二次函數的性質,掌握二次函數圖像關鍵點:1、開口方向2、對稱軸 3、頂點 4、與x軸交點 5、與y軸交點;增減性:當a>0時,對稱軸左邊,y隨x增大而減小;對稱軸右邊,y隨x增大而增大;當a<0時,對稱軸左邊,y隨x增大而增大;對稱軸右邊,y隨x增大而減小即可以解答此題.
科目:初中數學 來源: 題型:
【題目】如圖,矩形ABCD的對角線AC,BD相交于點O,點E,F在BD上,BE=DF.
(1)求證:AE=CF;
(2)若AB=6,∠COD=60°,求矩形ABCD的面積.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】某縣為了了解2018年初中畢業生畢業后的去向,對部分九年級學生進行了抽樣調查,就九年級學生的四種去向(A.讀普通高中;B.讀職業高中;C.直接進入社會就業;D.其他)進行數據統計,并繪制了兩幅不完整的統計圖(如圖①②)請問:
(1)本次共調查了_ 名初中畢業生;
(2)請計算出本次抽樣調查中,讀職業高中的人數和所占百分比,并將兩幅統計圖中不完整的部分補充完整;
(3)若該縣2018年九年級畢業生共有人,請估計該縣今年九年級畢業生讀職業高中的學生人數.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】在中,
.
(1)如圖①,點在斜邊
上,以點
為圓心,
長為半徑的圓交
于點
,交
于點
,與邊
相切于點
.求證:
;
(2)在圖②中作,使它滿足以下條件:
①圓心在邊上;②經過點
;③與邊
相切.
(尺規作圖,只保留作圖痕跡,不要求寫出作法)
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,在Rt△ABC中,∠C=90°,AB=5cm,AC=3cm,動點P從點B出發沿射線BC以1cm/s的速度移動,設運動的時間為ts.
(1)求BC邊的長;
(2)當△ABP為直角三角形時,求t的值.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】如圖,直線y=﹣ x+2
與x軸,y軸分別交于點A,點B,兩動點D,E分別從點A,點B同時出發向點O運動(運動到點O停止),運動速度分別是1個單位長度/秒和
個單位長度/秒,設運動時間為t秒,以點A為頂點的拋物線經過點E,過點E作x軸的平行線,與拋物線的另一個交點為點G,與AB相交于點F.
(1)求點A,點B的坐標;
(2)用含t的代數式分別表示EF和AF的長;
(3)當四邊形ADEF為菱形時,試判斷△AFG與△AGB是否相似,并說明理由.
(4)是否存在t的值,使△AGF為直角三角形?若存在,求出這時拋物線的解析式;若不存在,請說明理由.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】為了加強對校內外安全監控,創建平安校園,某學校計劃增加15臺監控攝像設備,現有甲、乙兩種型號的設備,其中每臺價格,有效監控半徑如表所示,經調查,購買1臺甲型設備比購買1臺乙型設備多150元,購買2臺甲型設備比購買3臺乙型設備少400元.
甲型 | 乙型 | |
價格(元/臺) | a | b |
有效半徑(米/臺) | 150 | 100 |
(1)求a、b的值;
(2)若購買該批設備的資金不超過11000元,且要求監控半徑覆蓋范圍不低于1600米,兩種型號的設備均要至少買一臺,請你為學校設計購買方案,并計算最低購買費用.
查看答案和解析>>
科目:初中數學 來源: 題型:
【題目】10月21日,“中國流動科技館”巡展啟動儀式在新華區青少年活動中心盛大舉行,此次巡展以“體驗科學”為主題.該區某中學舉行了“科普知識”競賽,為了解此次“科普知識”競賽成績的情況,隨機抽取了部分參賽學生的成績,整理并制作出如下的不完整的統計表和統計圖,如圖所示.請根據圖表信息解答以下問題.
組別 | 成績 | 頻數 |
A組 | ||
B組 | 12 | |
C組 | 18 | |
D組 | 21 |
(1)表中一共抽取了________個參賽學生的成績;________;
(2)求出計算扇形統計圖中“”的圓心角度數.
(3)若成績在90分以上(包括90分)的為“優”等,已知該校共有1200名學生,請你估計該校約有多少名學生的成績是“優”等.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com