日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

4.掌握知識之間的聯系.進一步培養觀察.分析.歸納.概括和綜合分析能力.以解析式表示的函數作圖象的方法有兩種.即列表描點法和圖象變換法.掌握這兩種方法是本節的重點.運用描點法作圖象應避免描點前的盲目性.也應避免盲目地連點成線.要把表列在關鍵處.要把線連在恰當處.這就要求對所要畫圖象的存在范圍.大致特征.變化趨勢等作一個大概的研究.而這個研究要借助于函數性質.方程.不等式等理論和手段.是一個難點.用圖象變換法作函數圖象要確定以哪一種函數的圖象為基礎進行變換.以及確定怎樣的變換.這也是個難點.1.作函數圖象的一個基本方法 查看更多

 

題目列表(包括答案和解析)

假設一個人從出生到死亡,在每個生日都測量身高,并作出這些數據散點圖,則這些點將不會落在一條直線上,但在一段時間內的增長數據有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄:

年齡/周歲

3

4

5

6

7

8

9

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

年齡/周歲

10

11

12

13

14

15

16

身高/cm

134.2

140.8

147.6

154.2

160.9

167.6

173.0

(1)作出這些數據的散點圖;

(2)求出這些數據的回歸方程;

(3)對于這個例子,你如何解釋回歸系數的含義?

(4)用下一年的身高減去當年的身高,計算他每年身高的增長數,并計算他從3~16歲身高的年均增長數.

(5)解釋一下回歸系數與每年平均增長的身高之間的聯系.

查看答案和解析>>

關于簡單隨機抽樣、系統抽樣、分層抽樣之間的聯系,下面有四種說法:(1)都是從總體中逐個抽取;(2)都是將整體分成幾部分,按事先規定的原則在各部分抽取;(3)抽樣過程中每個個體被抽取的概率相同;(4)將整體分成幾層,然后分層進行抽取.以上說法正確的個數是

A.1                          B.2                          C.3                          D.4

查看答案和解析>>

通過點的運動及線的運動變化,討論相交弦定理、切割線定理及其推論和切線長定理之間的聯系.

查看答案和解析>>

想象一下一個人從出生到死亡,在每個生日都測量身高,并作出這些數據散點圖.這些點將不會落在一條直線上,但在一段時間內的增長數據有時可以用線性回歸來分析.下表是一位母親給兒子作的成長記錄.

年齡/周歲

3

4

5

6

7

8

9

10

11

12

13

14

15

16

身高/cm

90.8

97.6

104.2

110.9

115.6

122.0

128.5

134.2

140.8

147.6

154.2

160.9

167.6

173.0

(1)作出這些數據的散點圖.

(2)求出這些數據的回歸方程.

(3)對于這個例子,你如何解釋回歸系數的含義?

(4)用下一年的身高減去當年的身高,計算他每年身高的增長數,并計算他從3—16歲身高的年均增長數.

(5)解釋一下回歸系數與每年平均增長的身高之間的聯系.

查看答案和解析>>

(2012•泉州模擬)數學與文學之間存在著許多奇妙的聯系.詩中有回文詩,如:“云邊月影沙邊雁,水外天光山外樹”,倒過來讀,便是“樹外山光天外水,雁邊沙影月邊云”,其意境和韻味讀來真是一種享受!數學中也有回文數,如:88,454,7337,43534等都是回文數,無論從左往右讀,還是從右往左讀,都是同一個數,稱這樣的數為“回文數”,讀起來還真有趣!
二位的回文數有11,22,33,44,55,66,77,88,99,共9個;
三位的回文數有101,111,121,131,…,969,979,989,999,共90個;
四位的回文數有1001,1111,1221,…,9669,9779,9889,9999,共90個;
由此推測:10位的回文數總共有
90000
90000
個.

查看答案和解析>>

1.不改變f(x)值域,即不能縮小原函數定義域。選項B,C,D均縮小了的定義域,故選A。

2.先作出f(x,y)=0關于軸對稱的函數的圖象,即為函數f(-x,y)=0的圖象,又

f(2-x,y)=0即為,即由f(-x,y)=0向右平移2個單位。故選C。

3.命題p為真時,即真數部分能夠取到大于零的所有實數,故二次函數的判別式,從而;命題q為真時,。

    若p或q為真命題,p且q為假命題,故p和q中只有一個是真命題,一個是假命題。

    若p為真,q為假時,無解;若p為假,q為真時,結果為1<a<2,故選C.

4.圖像法解方程,也可代入各區間的一個數(特值法或代入法),選C;

5.函數f(x)的對稱軸為2,結合其單調性,選A;

6.從反面考慮,注意應用特例,選B;

7.設tan=x (x>0),則+=,解出x=2,再用萬能公式,選A;

8.利用是關于n的一次函數,設S=S=m,=x,則(,p)、(,q)、

(x,p+q)在同一直線上,由兩點斜率相等解得x=0,則答案:0;

9.設cosx=t,t∈[-1,1],則a=t-t-1∈[-,1],所以答案:[-,1];

10.設高h,由體積解出h=2,答案:24;

11.設長x,則寬,造價y=4×120+4x×80+×80≥1760,答案:1760。

12.運用條件知:=2,且

==16

13.依題意可知,從而可知,所以有

,又為正整數,取,則

,所以,從而,所以,又,所以,因此有最小值為。

下面可證時,,從而,所以, 又,所以,所以,綜上可得:的最小值為11。

14.分析:這是有關函數定義域、值域的問題,題目是逆向給出的,解好本題要運用復合函數,把f(x)分解為u=ax+2x+1和y=lgu 并結合其圖象性質求解.

切實數x恒成立.   a=0或a<0不合題意,

解得a>1.

當a<0時不合題意;    a=0時,u=2x+1,u能取遍一切正實數;

a>0時,其判別式Δ=22-4×a×1≥0,解得0<a≤1.

所以當0≤a≤1時f(x)的值域是R

 

15.分析:此問題由于常見的思維定勢,易把它看成關于x的不等式討論。然而,若變換一個角度以m為變量,即關于m的一次不等式(x-1)m-(2x-1)<0在[-2,2]上恒成立的問題。對此的研究,設f(m)=(x-1)m-(2x-1),則問題轉化為求一次函數(或常數函數)f(m)的值在[-2,2]內恒為負值時參數x應該滿足的條件。

解:問題可變成關于m的一次不等式:(x-1)m-(2x-1)<0在[-2,2] 恒成立,設f(m)=(x-1)m-(2x-1),  則

解得x∈(,)

說明 本題的關鍵是變換角度,以參數m作為自變量而構造函數式,不等式問題變成函數在閉區間上的值域問題。本題有別于關于x的不等式2x-1>m(x-1)的解集是[-2,2]時求m的值、關于x的不等式2x-1>m(x-1)在[-2,2]上恒成立時求m的范圍。

一般地,在一個含有多個變量的數學問題中,確定合適的變量和參數,從而揭示函數關系,使問題更明朗化。或者含有參數的函數中,將函數自變量作為參數,而參數作為函數,更具有靈活性,從而巧妙地解決有關問題。

 

16.分析: ①問利用公式a與S建立不等式,容易求解d的范圍;②問利用S是n的二次函數,將S中哪一個值最大,變成求二次函數中n為何值時S取最大值的函數最值問題。

解:① 由a=a+2d=12,得到a=12-2d,所以

S=12a+66d=12(12-2d)+66d=144+42d>0,

S=13a+78d=13(12-2d)+78d=156+52d<0。

 解得:-<d<-3。

② S=na+n(n1-1)d=n(12-2d)+n(n-1)d

=[n-(5-)]-[(5-)]

因為d<0,故[n-(5-)]最小時,S最大。由-<d<-3得6<(5-)<6.5,故正整數n=6時[n-(5-)]最小,所以S最大。

說明: 數列的通項公式及前n項和公式實質上是定義在自然數集上的函數,因此可利用函數思想來分析或用函數方法來解決數列問題。也可以利用方程的思想,設出未知的量,建立等式關系即方程,將問題進行算式化,從而簡潔明快。由次可見,利用函數與方程的思想來解決問題,要求靈活地運用、巧妙的結合,發展了學生思維品質的深刻性、獨創性。

本題的另一種思路是尋求a>0、a<0 ,即:由d<0知道a>a>…>a,由S=13a<0得a<0,由S=6(a+a)>0得a>0。所以,在S、S、…、S中,S的值最大。

 

17.分析:異面直線PB和AC的距離可看成求直線PB上任意一點到AC的距離的最小值,從而設定變量,建立目標函數而求函數最小值。

  P

         M
A        H       B
     D     C

解:在PB上任取一點M,作MD⊥AC于D,MH⊥AB于H,

設MH=x,則MH⊥平面ABC,AC⊥HD 。

∴MD=x+[(2r-x)sinθ]=(sin+1)x-4rsinθx+4rsinθ=(sinθ+1)[x-]+

即當x=時,MD取最小值為兩異面直線的距離。

說明:本題巧在將立體幾何中“異面直線的距離”變成“求異面直線上兩點之間距離的最小值”,并設立合適的變量將問題變成代數中的“函數問題”。一般地,對于求最大值、最小值的實際問題,先將文字說明轉化成數學語言后,再建立數學模型和函數關系式,然后利用函數性質、重要不等式和有關知識進行解答。比如再現性題組第8題就是典型的例子。

 

18.分析:已知了一個積式,考慮能否由其它已知得到一個和式,再用方程思想求解。

解: 由A、B、C成等差數列,可得B=60°;

由△ABC中tanA+tanB+tanC=tanA?tanB?tanC,得

tanA+tanC=tanB(tanA?tanC-1)= (1+)

設tanA、tanC是方程x-(+3)x+2+=0的兩根,解得x=1,x=2+

設A<C,則tanA=1,tanC=2+,   ∴A=,C=

由此容易得到a=8,b=4,c=4+4。

說明:本題的解答關鍵是利用“△ABC中tanA+tanB+tanC=tanA?tanB?tanC”這一條性質得到tanA+tanC,從而設立方程求出tanA和tanC的值,使問題得到解決。

19.分析:當x∈(-∞,1]時f(x)=lg有意義的函數問題,轉化為1+2+4a>0在x∈(-∞,1]上恒成立的不等式問題。

解:由題設可知,不等式1+2+4a>0在x∈(-∞,1]上恒成立,

即:()+()+a>0在x∈(-∞,1]上恒成立。

設t=(),  則t≥,   又設g(t)=t+t+a,其對稱軸為t=-

∴ t+t+a=0在[,+∞)上無實根,  即 g()=()++a>0,得a>-

所以a的取值范圍是a>-。

說明:對于不等式恒成立,引入新的參數化簡了不等式后,構造二次函數利用函數的圖像和單調性進行解決問題,其中也聯系到了方程無解,體現了方程思想和函數思想。一般地,我們在解題中要抓住二次函數及圖像、二次不等式、二次方程三者之間的緊密聯系,將問題進行相互轉化。

在解決不等式()+()+a>0在x∈(-∞,1]上恒成立的問題時,也可使用“分離參數法”: 設t=(),  t≥,則有a=-t-t∈(-∞,-],所以a的取值范圍是a>-。其中最后得到a的范圍,是利用了二次函數在某區間上值域的研究,也可屬應用“函數思想”。

 

20.解:f(x)=cosqsinx-(sinxcosq-cosxsinq)+(tanq-2)sinx-sinq

       =sinqcosx+(tanq-2)sinx-sinq

因為f(x)是偶函數,

所以對任意xÎR,都有f(-x)=f(x),

即sinqcos(-x)+(tanq-2)sin(-x)-sinq=sinqcosx+(tanq-2)sinx-sinq,

即(tanq-2)sinx=0,

所以tanq=2

解得或

此時,f(x)=sinq(cosx-1).

當sinq=時,f(x)=(cosx-1)最大值為0,不合題意最小值為0,舍去;

當sinq=時,f(x)=(cosx-1)最小值為0,

當cosx=-1時,f(x)有最大值為,

自變量x的集合為{x|x=2kp+p,kÎZ}.

 

21.解:(1);.,
若上是增函數,則恒成立,即
若上是減函數,則恒成立,這樣的不存在.
綜上可得:.

(2)(證法一)設,由得,于是有,(1)-(2)得:,化簡可得
,,,故,即有.

(證法二)假設,不妨設,由(1)可知在

上單調遞增,故,

這與已知矛盾,故原假設不成立,即有.

 


同步練習冊答案
主站蜘蛛池模板: 成人精品一区二区三区中文字幕 | 天天干夜夜爽 | 91麻豆精品久久久久蜜臀 | 亚洲国产成人精品女人久久久 | 成人毛片在线观看 | 日韩久草| 爱爱小视频免费看 | 欧美色v | 免费在线a | www.色综合 | 日韩一二三区 | 国产精品久久精品 | 四虎网站 | 国产成人精品视频在线观看 | 狠狠做深爱婷婷久久综合一区 | 久久美女| 91视频电影 | 国产精品99久久久久久久vr | 国产精品一区二区三区四区 | 午夜专区 | 天堂网色 | 91精品电影 | 亚洲免费小视频 | 不卡二区 | 欧美精品一区三区 | 午夜在线影院 | 久草在线 | 国产在线观看91一区二区三区 | 一区二区三区精品视频 | 国产在线精品一区二区 | 国产99999 | 国产高清一区二区 | 国产精品伦一区二区三级视频 | 中文字幕日韩在线 | 欧美福利影院 | 毛片入口 | 操久久| 国产精品1区2区 | av电影天堂网 | 日韩中文字幕 | 国产在线激情视频 |