題目列表(包括答案和解析)
已知函數在
取得極值
(1)求的單調區間(用
表示);
(2)設,
,若存在
,使得
成立,求
的取值范圍.
【解析】第一問利用
根據題意在
取得極值,
對參數a分情況討論,可知
當即
時遞增區間:
遞減區間:
,
當即
時遞增區間:
遞減區間:
,
第二問中, 由(1)知:
在
,
,
在
從而求解。
解:
…..3分
在
取得極值,
……………………..4分
(1) 當即
時 遞增區間:
遞減區間:
,
當即
時遞增區間:
遞減區間:
,
………….6分
(2) 由(1)知:
在
,
,
在
……………….10分
, 使
成立
得:
3x |
x+3 |
3x |
x+3 |
3x |
2x+3 |
x |
x+1 |
3x |
4x+3 |
x |
x+2 |
x |
x+2 |
x |
3x+4 |
x |
7x+8 |
x |
15x+16 |
x |
(2n-1)x+2n |
x |
(2n-1)x+2n |
x |
x+2 |
x |
x+2 |
x |
3x+4 |
x |
7x+8 |
x |
(2n-1)x+2n |
x |
(2n-1)x+2n |
x |
x+2 |
x |
x+2 |
x |
3x+4 |
x |
7x+8 |
x |
15x+16 |
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com