日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(3)若對任意且..試證明存在. 查看更多

 

題目列表(包括答案和解析)

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2011=2009?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

可以證明,對任意的n∈N*,有(1+2+…+n)2=13+23+…+n3成立.下面嘗試推廣該命題:
(1)設(shè)由三項組成的數(shù)列a1,a2,a3每項均非零,且對任意的n∈{1,2,3}有(a1+a2+…+an2=a13+a23+…+an3成立,求所有滿足條件的數(shù)列;
(2)設(shè)數(shù)列{an}每項均非零,且對任意的n∈N*有(a1+a2+…+an2=a13+a23+…+an3成立,數(shù)列{an}的前n項和為Sn.求證:an+12-an+1=2Sn,n∈N*
(3)是否存在滿足(2)中條件的無窮數(shù)列{an},使得a2012=-2011?若存在,寫出一個這樣的無窮數(shù)列(不需要證明它滿足條件); 若不存在,說明理由.

查看答案和解析>>

定義數(shù)列{xn},如果存在常數(shù)p,使對任意正整數(shù)n,總有(xn+1-p)(xn-p)<0成立,那么我們稱數(shù)列{xn}為“p-擺動數(shù)列”.
(1)設(shè)an=2n-1,數(shù)學(xué)公式,n∈N*,判斷{an}、{bn}是否為“p-擺動數(shù)列”,并說明理由;
(2)設(shè)數(shù)列{cn}為“p-擺動數(shù)列”,c1>p,求證:對任意正整數(shù)m,n∈N*,總有c2n<c2m-1成立;
(3)設(shè)數(shù)列{dn}的前n項和為Sn,且數(shù)學(xué)公式,試問:數(shù)列{dn}是否為“p-擺動數(shù)列”,若是,求出p的取值范圍;若不是,說明理由.

查看答案和解析>>

已知為兩個正數(shù),且,設(shè)當(dāng)時,

(Ⅰ)求證:數(shù)列是遞減數(shù)列,數(shù)列是遞增數(shù)列;

(Ⅱ)求證:

(Ⅲ)是否存在常數(shù)使得對任意,有,若存在,求出的取值范圍;若不存在,試說明理由.

查看答案和解析>>

一、BDCBD    ACA CC    

二、                    ①④

三、16.解:(1)  

  即   

為銳角       

 (2)

  又 代入上式得:(當(dāng)且僅當(dāng) 時等號成立。)

  (當(dāng)且僅當(dāng) 時等號成立。)

17.解:(1)由已知得 解得.設(shè)數(shù)列的公比為

,可得.又,可知,即

解得. 由題意得.  .故數(shù)列的通項為

  (2)由于   由(1)得 

=

18.解:(1)因為     圖象的一條對稱軸是直線 

<del id="yyoyu"></del>
  • <tfoot id="yyoyu"><input id="yyoyu"></input></tfoot>

    20081226

    (2)

      由

    分別令的單調(diào)增區(qū)間是(開閉區(qū)間均可)。

    (3) 列表如下:

    0

    0

    1

    0

    ―1

    0

    19.解:(I)由,則.

    兩式相減得. 即.          

    時,.∴數(shù)列是首項為4,公比為2的等比數(shù)列.

    (Ⅱ)由(I)知.∴            

    ①當(dāng)為偶數(shù)時,

    ∴原不等式可化為,即.故不存在合條件的.      

    ②當(dāng)為奇數(shù)時,.

    原不等式可化為,所以,又m為奇數(shù),所以m=1,3,5……

    20.解:(1)依題意,得

       (2)令

    當(dāng)在此區(qū)間為增函數(shù)

    當(dāng)在此區(qū)間為減函數(shù)

    當(dāng)在此區(qū)間為增函數(shù)

    處取得極大值又

    因此,當(dāng)

    要使得不等式

    所以,存在最小的正整數(shù)k=2007,

    使得不等式恒成立。……7分

      (3)(方法一)

         

    又∵由(2)知為增函數(shù),

    綜上可得

    (方法2)由(2)知,函數(shù)

    上是減函數(shù),在[,1]上是增函數(shù)又

    所以,當(dāng)時,-

    又t>0,

    ,且函數(shù)上是增函數(shù),

     

    綜上可得

    21.解:(1) 

    當(dāng)

    函數(shù)有一個零點;當(dāng)時,,函數(shù)有兩個零點。

       (2)假設(shè)存在,由①知拋物線的對稱軸為x=-1,∴ 

    由②知對,都有

    又因為恒成立,  ,即,即

    當(dāng)時,

    其頂點為(-1,0)滿足條件①,又,

    都有,滿足條件②。∴存在,使同時滿足條件①、②。

       (3)令,則

    內(nèi)必有一個實根。即

    使成立。

     

     

     

     

     

    主站蜘蛛池模板: 丰满少妇理论片 | 欧美啊v| 久久99深爱久久99精品 | 成人免费淫片aa视频免费 | 国产精品第一国产精品 | 91国产精品 | 91精品一区二区三区久久久久 | 久久久久久久国产精品 | 一区二区免费 | 热久久这里只有精品 | 欧美一级特黄aaaaaaa视频片 | 精品自拍视频 | 蜜桃视频在线播放 | 国产精久 | 亚洲三级黄 | 日本在线观看www | 久草日本 | 伊人网页 | 久久久精品日本 | 精品一区电影 | 欧美高清dvd | 免费黄色影视 | 国产在线小视频 | 亚洲精品电影网在线观看 | 日韩三级在线免费 | 麻豆一区一区三区四区 | 久久精品国产免费 | 国产欧美日韩一区二区三区 | 国精产品一区一区三区在线观看 | 欧美自拍视频 | 亚洲一区二区三区视频 | 国产精久久一区二区三区 | www.久久精品视频 | 精一区二区| 九九九久久国产免费 | 色婷婷av一区二区三区软件 | 三区av| 99热播在线 | 透逼| 亚洲精品乱码久久久久久按摩观 | 国产在线精品成人免费怡红院 |
      <strike id="yyoyu"><input id="yyoyu"></input></strike><del id="yyoyu"></del>
    • <strike id="yyoyu"><input id="yyoyu"></input></strike>
      <tfoot id="yyoyu"><menu id="yyoyu"></menu></tfoot>
    • <fieldset id="yyoyu"></fieldset>
      <strike id="yyoyu"><input id="yyoyu"></input></strike>