日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

3.. 分析:利用導數可以研究函數的單調性.一般應先確定函數的定義域.再求導數.通過判斷函數定義域被導數為零的點所劃分的各區間內的符號.來確定函數在該區間上的單調性.當給定函數含有字母參數時.分類討論難于避免.不同的化歸方法和運算程序往往使分類方法不同.應注意分類討論的準確性. 解: 1.函數定義域為R. 當時. ∴函數在上是增函數. 當時. ∴函數在上是減函數. 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3.

(1)求f(x)的解析式;

(2)若過點A(2,m)可作曲線y=f(x)的三條切線,求實數m的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。第一問,利用函數f(x)=ax3+bx2+cx在x=±1處取得極值,且在x=0處的切線的斜率為-3,得到c=-3 ∴a=1, f(x)=x3-3x

(2)中設切點為(x0,x03-3x0),因為過點A(2,m),所以∴m-(x03-3x0)=(3x02-3)(2-x0)分離參數∴m=-2x03+6x02-6

然后利用g(x)=-2x3+6x2-6函數求導數,判定單調性,從而得到要是有三解,則需要滿足-6<m<2

解:(1)f′(x)=3ax2+2bx+c

依題意

又f′(0)=-3

∴c=-3 ∴a=1 ∴f(x)=x3-3x

(2)設切點為(x0,x03-3x0),

∵f′(x)=3x2-3,∴f′(x0)=3x02-3

∴切線方程為y-(x03-3x0)=(3x02-3)(x-x0)

又切線過點A(2,m)

∴m-(x03-3x0)=(3x02-3)(2-x0)

∴m=-2x03+6x02-6

令g(x)=-2x3+6x2-6

則g′(x)=-6x2+12x=-6x(x-2)

由g′(x)=0得x=0或x=2

∴g(x)在(-∞,0)單調遞減,(0,2)單調遞增,(2,+∞)單調遞減.

∴g(x)極小值=g(0)=-6,g(x)極大值=g(2)=2

畫出草圖知,當-6<m<2時,m=-2x3+6x2-6有三解,

所以m的取值范圍是(-6,2).

 

查看答案和解析>>

已知函數 R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數a的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

已知函數

(1)求在區間上的最大值;

(2)若函數在區間上存在遞減區間,求實數m的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用,求解函數的最值。第一問中,利用導數求解函數的最值,首先求解導數,然后利用極值和端點值比較大小,得到結論。第二問中,我們利用函數在上存在遞減區間,即上有解,即,即可,可得到。

解:(1), 

,解得                 ……………3分

上為增函數,在上為減函數,

            

 

 

 

 

 

.          …………6分

(2)

上存在遞減區間,上有解,……9分

上有解,

所以,實數的取值范圍為  

 

查看答案和解析>>

汕頭二中擬建一座長米,寬米的長方形體育館.按照建筑要求,每隔米(為正常數)需打建一個樁位,每個樁位需花費萬元(樁位視為一點且打在長方形的邊上),樁位之間的米墻面需花萬元,在不計地板和天花板的情況下,當為何值時,所需總費用最少?

【解析】本試題主要考查了導數在研究函數中的運用。先求需打個樁位.再求解墻面所需費用為:,最后表示總費用,利用導數判定單調性,求解最值。

解:由題意可知,需打個樁位. …………………2分

墻面所需費用為:,……4分

∴所需總費用)…7分

,則 

時,;當時,

∴當時,取極小值為.而在內極值點唯一,所以.∴當時,(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 久久精品国产99国产 | 久久不卡 | 亚洲日本va在线观看 | 中文字幕乱码亚洲精品一区 | 高清视频新国产 | 污网址在线免费观看 | 久久99国产精品 | 亚洲色图第一区 | 国产精品免费视频观看 | 蜜桃一区二区三区 | 国产高清在线观看 | 亚洲成人毛片 | 日本免费黄色网址 | 国产精品国产三级国产专业不 | 成人欧美在线 | 午夜免费一区二区播放 | 在线视频亚洲 | 亚洲国产精品久久 | 伊人av在线免费观看 | 91 在线观看 | 成人在线视频播放 | 日本一区二区久久 | 亚洲欧美一区二区三区在线 | 久久草在线视频 | 另类二区| 黑人巨大精品欧美一区二区 | 精品一区免费观看 | 91在线高清观看 | 国产三级| 精品久久久久久亚洲精品 | av久久| 欧美一级三级 | 日韩视频一区 | 中文字幕一区二区三区乱码图片 | 欧美亚洲国产一区二区三区 | 91免费小视频 | 不卡在线 | 色呦呦日韩 | 国产一级免费网站 | va在线观看| 国产 日韩 欧美 中文 在线播放 |