汕頭二中擬建一座長米,寬
米的長方形體育館.按照建筑要求,每隔
米(
,
為正常數)需打建一個樁位,每個樁位需花費
萬元(樁位視為一點且打在長方形的邊上),樁位之間的
米墻面需花
萬元,在不計地板和天花板的情況下,當
為何值時,所需總費用最少?
【解析】本試題主要考查了導數在研究函數中的運用。先求需打個樁位.再求解墻面所需費用為:
,最后表示總費用
,利用導數判定單調性,求解最值。
解:由題意可知,需打個樁位.
…………………2分
墻面所需費用為:,……4分
∴所需總費用(
)…7分
令,則
當時,
;當
時,
.
∴當時,
取極小值為
.而在
內極值點唯一,所以
.∴當
時,
(萬元),即每隔3米打建一個樁位時,所需總費用最小為1170萬元.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com