題目列表(包括答案和解析)
已知函數的最小值為0,其中
(Ⅰ)求的值;
(Ⅱ)若對任意的有
≤
成立,求實數
的最小值;
(Ⅲ)證明(
).
【解析】(1)解:
的定義域為
由,得
當x變化時,,
的變化情況如下表:
x |
|
|
|
|
- |
0 |
+ |
|
|
極小值 |
|
因此,在
處取得最小值,故由題意
,所以
(2)解:當時,取
,有
,故
時不合題意.當
時,令
,即
令,得
①當時,
,
在
上恒成立。因此
在
上單調遞減.從而對于任意的
,總有
,即
在
上恒成立,故
符合題意.
②當時,
,對于
,
,故
在
上單調遞增.因此當取
時,
,即
不成立.
故不合題意.
綜上,k的最小值為.
(3)證明:當n=1時,不等式左邊==右邊,所以不等式成立.
當時,
在(2)中取,得
,
從而
所以有
綜上,,
(1)y=lg(x-2)+1;
(2)y=.
設數列的各項均為正數.若對任意的
,存在
,使得
成立,則稱數列
為“Jk型”數列.
(1)若數列是“J2型”數列,且
,
,求
;
(2)若數列既是“J3型”數列,又是“J4型”數列,證明:數列
是等比數列.
【解析】1)中由題意,得,
,
,
,…成等比數列,且公比
,
所以.
(2)中證明:由{}是“j4型”數列,得
,…成等比數列,設公比為t. 由{
}是“j3型”數列,得
,…成等比數列,設公比為
;
,…成等比數列,設公比為
;
…成等比數列,設公比為
;
(1)已知f(x)=x2+2x,求f(2x+1);
(2)已知f(-1)=x+2
,求f(x);
(3)已知f(x)-)=3x+2,求f(x).
某種型號的汽車在勻速行駛中每小時耗油量關于行駛速度
的函數解析式可以表示為:
.已知甲、乙兩地相距
,設汽車的行駛速度為
,從甲地到乙地所需時間為
,耗油量為
.
(1)求函數及
;
(2)求當為多少時,
取得最小值,并求出這個最小值.
【解析】(1) ,根據
可求出y=f(x).
(2)求導,根據導數確定其最小值.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com