日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知某圓的極坐標方程為:.(Ⅰ)將極坐標方程化為普通方程,并選擇恰當的參數寫出它的參數方程,在該圓上.求x+y的最大值和最小值. D.選修4―4 不等式證明 查看更多

 

題目列表(包括答案和解析)

已知某圓的極坐標方程為:ρ2-4
2
ρcos(θ-
π
4
)+6=0.
(1)將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

已知某圓的極坐標方程為:ρ2 -4ρcos(θ-)+6=0.

(1)將極坐標方程化為普通方程;

(2)若點P(x,y)在該圓上,求xy的最大值和最小值.

查看答案和解析>>

(1)已知某圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程.
(2)已知二階矩陣M有特征值λ=8及對應的一個特征向量e1=
.
1
1
.
,且矩陣M對應的變換將點(-1,2)變換成
(-2,4).求矩陣M的另一個特征值及對應的一個特征向量e2的坐標之間的關系.

查看答案和解析>>

(1)已知某圓的極坐標方程為:ρ2-42ρcos(θ-π4)+6=0.將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程.
(2)已知二階矩陣M有特征值λ=8及對應的一個特征向量e1=,且矩陣M對應的變換將點(-1,2)變換成
(-2,4).求矩陣M的另一個特征值及對應的一個特征向量e2的坐標之間的關系.

查看答案和解析>>

選修4-4:極坐標與參數方程
已知某圓的極坐標方程為:ρ2-4數學公式ρcos(θ-數學公式)+6=0.
(1)將極坐標方程化為普通方程;并選擇恰當的參數寫出它的參數方程;
(2)若點P(x,y)在該圓上,求x+y的最大值和最小值.

查看答案和解析>>

一、填空題

1.;2.-1;3.48;4.;5.1;6.a;7.;

 

8.;9.;10.4;11.160;12.;13.;14.

二、解答題

15.證明:(Ⅰ)

因為平面PBC與平面PAD的交線為

所以

(Ⅱ)在中,由題設可得

于是

在矩形中,.又,

所以平面   又

平面PBC與平面PAD所成二面角的一個平面角 

中  

所以平面PBC與平面PAD所成二面角的大小為

16.解:(Ⅰ)

          ……2分

由題意得,得,

時,最小正整數的值為2,故.        ……6分

(Ⅱ)因  

  當且僅當,時,等號成立

,又因,則 ,即 ……10分

由①知:

,則  ,

,故函數的值域為.                   ……14分

 

17.解:(Ⅰ)6ec8aac122bd4f6e

6ec8aac122bd4f6e時,g(x)=f(x)-f(x-1)6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

當x=1時,g(x)=g(1)也適合上式

6ec8aac122bd4f6e

6ec8aac122bd4f6e

等號當且僅當x=12-x即x=6時成立,即當x=6時,6ec8aac122bd4f6e(萬件)

∴6月份該商品的需求量最大,最大需求量為6ec8aac122bd4f6e萬件。

(Ⅱ)依題意,對一切6ec8aac122bd4f6e,有

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

6ec8aac122bd4f6e

答每個月至少投入6ec8aac122bd4f6e萬件可以保證每個月都足量供應。

 

18.解:(Ⅰ)  由(x-12)2+y2=144-a(a<144),可知圓心M的坐標為(12,0),

依題意,∠ABM=∠BAM=,kAB= , 設MA、MB的斜率k.

,  解得=2,=- .

∴所求BD方程為x+2y-12=0,AC方程為2x-y-24=0.

(Ⅱ) 設MB、MA的傾斜角分別為θ1,θ2,則tanθ1=2,tanθ2=-,

設圓半徑為r,則A(12+),B(12-,),

再設拋物線方程為y2=2px (p>0),由于A,B兩點在拋物線上,

∴ ∴ r=4,p=2.

得拋物線方程為y2=4x。

 

19.解:(Ⅰ)設數列的公差為,由

    , ,解得,=3

    ∴

    ∵  ∴Sn==

(Ⅱ)  

(Ⅲ)由(2)知,

  ∴

  ∵成等比數列

 ∴       即

時,7=1,不合題意;

時,=16,符合題意;

時,,無正整數解;

時,,無正整數解;

時,,無正整數解;

時,,無正整數解;

時, ,則,而,所以,此時不存在正整數m,n,且1<m<n,使得成等比數列。

綜上,存在正整數m=2,n=16,且1<m<n,使得成等比數列。

 

20.解:(Ⅰ)假設①,其中偶函數,為奇函數,則有,即②,

由①②解得,.

定義在R上,∴,都定義在R上.

.

是偶函數,是奇函數,

,

.  

,則,

平方得,∴,

.                    …………6分

(Ⅱ)∵關于單調遞增,∴.

對于恒成立,

對于恒成立,

,則,

,∴,故上單調遞減,

,∴為m的取值范圍. …………10分

(Ⅲ)由(1)得,

無實根,即①無實根,    

方程①的判別式.

1°當方程①的判別式,即時,

方程①無實根.                            ……………12分

2°當方程①的判別式,即時,

方程①有兩個實根,

②,

只要方程②無實根,故其判別式,

即得③,且④,

,③恒成立,由④解得,

∴③④同時成立得

綜上,m的取值范圍為.           ……………16分

 

 

 

 

 

 

 

三、附加題

21A.(1)∵DE2=EF?EC,∴DE : CE=EF: ED.

          ∵ÐDEF是公共角,

          ∴ΔDEF∽ΔCED.  ∴ÐEDF=ÐC.

          ∵CD∥AP,    ∴ÐC=Ð P.

          ∴ÐP=ÐEDF.

(2)∵ÐP=ÐEDF,    ÐDEF=ÐPEA,

     ∴ΔDEF∽ΔPEA. ∴DE : PE=EF : EA.即EF?EP=DE?EA.

     ∵弦AD、BC相交于點E,∴DE?EA=CE?EB.∴CE?EB=EF?EP.

21B.解(Ⅰ)由條件得矩陣,

它的特征值為,對應的特征向量為;

(Ⅱ)

橢圓的作用下的新曲線的方程為

21C.解:(Ⅰ)x2+y2-4x-4y+6=0;                    

(Ⅱ)x+y=4+2sin()  最大值6,最小值2 . 

21D.證明:

  

當且僅當時,等號成立.

22.解:設既會唱歌又會跳舞的有x人,則文娛隊中共有(7-x)人,那么只會一項的人數是(7-2 x)人.

 (I)∵,

.即

∴x=2.           故文娛隊共有5人.

(II) ,,

的概率分布列為

0

1

2

P

=1.

23.解:(Ⅰ);

(Ⅱ)

 

 

 


同步練習冊答案
主站蜘蛛池模板: 成人精品高清 | 国产美女精品视频 | 免费黄色激情视频 | 国产中文在线 | 日韩不卡一区 | 九九热在线免费视频 | 国产天堂一区二区 | 少妇被艹视频 | 日本va欧美va精品发布 | 拍真实国产伦偷精品 | 国产高清不卡 | 97视频精品 | 日本精品二区 | 日本一区二区三区视频在线 | 色婷婷综合久久久中文字幕 | 国产精品无码久久综合网 | 久久r免费视频 | 一区二区三区四区免费观看 | 成人免费毛片高清视频 | 男人天堂99 | 成人av影片在线观看 | 欧美不卡二区 | 伊人网综合在线 | 午夜精品一区 | 欧美专区在线观看 | 午夜视频在线观看网站 | 久久99精品国产.久久久久 | 色综合免费| 成人在线免费观看 | 91免费看| 国产专区在线播放 | 国产精品久久久久久久久久免费看 | xxx在线| 久久久久香蕉视频 | 免费一区在线 | 亚洲综合在线一区二区 | 超碰在线看 | 久久一 | 国产精品久久久久久久久久免费看 | 91社区在线高清 | 日本一区二区三区四区 |