日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(3)設表示數列的前項和.試問:是否存在關于的整式.使得 查看更多

 

題目列表(包括答案和解析)

設等比數列{an}的前n項的和為Sn,公比為q(q≠1).
(1)若S4,S12,S8成等差數列,求證:a10,a18,a14成等差數列;
(2)若Sm,Sk,St(m,k,t為互不相等的正整數)成等差數列,試問數列{an}中是否存在不同的三項成等差數列?若存在,寫出兩組這三項;若不存在,請說明理由;
(3)若q為大于1的正整數.試問{an}中是否存在一項ak,使得ak恰好可以表示為該數列中連續兩項的和?請說明理由.

查看答案和解析>>

設等比數列{an}的前n項的和為Sn,公比為q(q≠1).
(1)若S4,S12,S8成等差數列,求證:a10,a18,a14成等差數列;
(2)若Sm,Sk,St(m,k,t為互不相等的正整數)成等差數列,試問數列{an}中是否存在不同的三項成等差數列?若存在,寫出兩組這三項;若不存在,請說明理由;
(3)若q為大于1的正整數.試問{an}中是否存在一項ak,使得ak恰好可以表示為該數列中連續兩項的和?請說明理由.

查看答案和解析>>

設等比數列{an}的前n項和為Sn,公比為q(q≠1).

(Ⅰ)若S4,S12,S8成等差數列,求證:a10,a18,a14成等差數列;

(Ⅱ)若Sm,Sk,Sl(m,k,l為互不相等的正整數)成等差數列,試問數列{an}中是否存在不同的三項成等差數列?若存在,寫出兩組這三項,若不存在,請說明理由;

(Ⅲ)若q為大于1的正整數,試問{an}中是否存在一項ak,使得ak恰好可以表示為該數列中連續兩項的和?請說明理由.

查看答案和解析>>

已知數列中,且點在直線上.

 (1)求數列的通項公式;

 (2)若函數

求函數的最小值;

 (3)設表示數列的前項和.試問:是否存在關于的整式,使得

對于一切不小于2的自然數恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

(16分)
已知數列中,且點在直線上.
(1)求數列的通項公式;
(2)若函數
求函數的最小值;
(3)設表示數列的前項和.試問:是否存在關于的整式,使得
對于一切不小于2的自然數恒成立? 若存在,寫出的解析式,并加以證明;若不存在,試說明理由。

查看答案和解析>>

一、選擇題(本大題共8小題,每小題5分,共40分)

1.B   2. D  3.B   4.B   5.A   6.A   7.C   8. A.

二、填空題(本大題共6小題,每小題5分,共30分)

9.      10. 4       11.  (2分),(3分) 

12.      13.         14.       15.

三、解答題(本大題共6小題,共80分)

16.(本題滿分10分)

解:(1)由向量共線有:

       即,            4分

       又,所以,

       則=,即          6分

      (2)由余弦定理得

       所以當且僅當時等號成立        10分

       所以.          12分

 

17.(本小題滿分12分)

解:(1)由已知條件得

      2分

,則             6分

答:的值為

(2)解:可能的取值為0,1,2,3       5分

              6分

 

     7分

                 8分

   的分布列為:

 

 

 

 

0

1

2

3

 

 

 

 

 

        10分

 

所以                12分

答:數學期望為

 

18.(本小題滿分14分)

解:(1) 在△PAC中,∵PA=3,AC=4,PC=5,

        ∴,∴;……1分

       又AB=4,PB=5,∴在△PAB中,

       同理可得  …………………………2分

       ∵,∴……3分

      ∵平面ABC,∴PA⊥BC.   …………4分

(2)  如圖所示取PC的中點G,…………………5分

連結AG,BG,∵PF:FC=3:1,∴F為GC的中點

      又D、E分別為BC、AC的中點,

∴AG∥EF,BG∥FD,又AG∩GB=G,EF∩FD=F,……………7分 

      ∴面ABG∥面DEF.           

即PC上的中點G為所求的點.                  …………… 9分

(3)由(2)知G這PC的中點,連結GE,∴GE⊥平面ABC,過E作EH⊥AB于H,連結GH,則GH⊥AB,∴∠EHG為二面角G-AB-C的平面角.         …………… 11分

        又  

     又      …………… 13分

                         

∴二面角G-AB-C的平面角的正切值為.         …………… 14分

 

19.(本小題滿分14分)

(1)6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e   ……1分

∴當6ec8aac122bd4f6e時,6ec8aac122bd4f6e,此時6ec8aac122bd4f6e單調遞減

6ec8aac122bd4f6e時,6ec8aac122bd4f6e,此時6ec8aac122bd4f6e單調遞增   ……3分 

6ec8aac122bd4f6e的極小值為6ec8aac122bd4f6e ……4分

(2)6ec8aac122bd4f6e6ec8aac122bd4f6e的極小值為1,即6ec8aac122bd4f6e6ec8aac122bd4f6e上的最小值為1,

6ec8aac122bd4f6e6ec8aac122bd4f6e……5分

6ec8aac122bd4f6e,6ec8aac122bd4f6e,  ……6分

6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e6ec8aac122bd4f6e上單調遞增  ……7分

6ec8aac122bd4f6e

∴在(1)的條件下,6ec8aac122bd4f6e……9分

(3)假設存在實數6ec8aac122bd4f6e,使6ec8aac122bd4f6e6ec8aac122bd4f6e)有最小值3,6ec8aac122bd4f6e6ec8aac122bd4f6e …9分

① 當6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e上單調遞減,6ec8aac122bd4f6e,6ec8aac122bd4f6e(舍去),所以,此時6ec8aac122bd4f6e無最小值.  ……10分 

②當6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e上單調遞減,在6ec8aac122bd4f6e上單調遞增

6ec8aac122bd4f6e,6ec8aac122bd4f6e,滿足條件.  ……11分

③ 當6ec8aac122bd4f6e時,6ec8aac122bd4f6e6ec8aac122bd4f6e上單調遞減,6ec8aac122bd4f6e,6ec8aac122bd4f6e(舍去),所以,此時6ec8aac122bd4f6e無最小值.綜上,存在實數6ec8aac122bd4f6e,使得當6ec8aac122bd4f6e6ec8aac122bd4f6e有最小值3.……14分

 

20.解(1)∵6ec8aac122bd4f6e過(0,0)

    則6ec8aac122bd4f6e

    又∵6ec8aac122bd4f6e

    將C點坐標代入得  6ec8aac122bd4f6e

    解得  c2=8,b2=4

    ∴橢圓m:6ec8aac122bd4f6e  …………5分

    (2)由條件D(0,-2)  ∵M(0,t)

    1°當k=0時,顯然-2<t<2  …………6分

    2°當k≠0時,設6ec8aac122bd4f6e

    6ec8aac122bd4f6e   消y得

    6ec8aac122bd4f6e   …………8分

    由△>0  可得  6ec8aac122bd4f6e   ①………………9分

    6ec8aac122bd4f6e

    6ec8aac122bd4f6e     6ec8aac122bd4f6e   

    6ec8aac122bd4f6e   …………11分

    6ec8aac122bd4f6e 

    6ec8aac122bd4f6e   ②

    ∴t>1  將①代入②得   1<t<4

    ∴t的范圍是(1,4)………………13分

    綜上t∈(-2,4)  ………………14分

     

    21.(本小題滿分14分)

    解:(1)由點P在直線上,

    ,-----------------------------------------------2分

    ,數列{}是以1為首項,1為公差的等差數列

       ,同樣滿足,所以---------------4分

      (2)

          ---------------------6分

         

         所以是單調遞增,故的最小值是----------------------8分

    (3),可得-------10分

         ,

    ……

    ,n≥2------------------12分

    故存在關于n的整式g(x)=n,使得對于一切不小于2的自然數n恒成立.----14分

    主站蜘蛛池模板: 99视频在线看 | 精品国产91乱码一区二区三区 | 91久久精品一区二区二区 | 中文字幕第15页 | 成年人网站在线免费观看 | 精品视频 | 欧美午夜一区二区三区免费大片 | 久草热久草在线 | 欧美成人一区二区三区片免费 | 日韩精品无玛区免费专区又长又大 | 日韩在线中文字幕 | 91麻豆精品久久久久蜜臀 | 国产一区二区三区视频在线观看 | 一区在线视频 | 欧美综合一区二区 | 色婷婷综合国产精品一区 | 久久成人精品视频 | 久久av资源网 | 国产在线一区二区 | 天堂福利影院 | 玖玖在线精品 | 亚洲免费国产视频 | 玖玖精品在线 | 91精品午夜| 欧美xxxxxxxx| 亚欧在线观看 | 欧美一级特黄aaaaaaa色戒 | 黄色一级大片在线免费看产 | 福利网址| 亚洲黄色在线免费观看 | 国产精品美女久久久久久免费 | 草草影院ccyy | 美女爽到呻吟久久久久 | 日韩精品一区二区在线 | 羞羞视频免费网站 | 欧美视频在线一区 | 日韩最新av | 亚洲一区二区在线播放 | 可以免费看黄的网站 | 亚洲精品第一页 | 亚洲女人的天堂 |