日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

①時(shí).只有一個(gè)實(shí)數(shù)根, ②時(shí).是奇函數(shù), 查看更多

 

題目列表(包括答案和解析)

(09年湖北黃岡聯(lián)考理)(14分)設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足

(1)判斷函數(shù)是否是集合M中的元素,并說明理由;

(2)若集合M中的元素具有下面的性質(zhì):“若的定義域?yàn)镈,則對(duì)于任意,都存在,使得等式成立”

試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;

(3)設(shè)是方程的實(shí)數(shù)根,求證:對(duì)于定義域中的任意的,當(dāng)時(shí),

查看答案和解析>>

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“①方程f(x)-x=0有實(shí)數(shù)根;②函數(shù)f(x)的導(dǎo)數(shù)f′(x)滿足0<f′(x)<1.”

(Ⅰ)判斷函數(shù)f(x)=+是否是集合M中的元素,并說明理由;

(Ⅱ)集合M中的元素f(x)具有下面的性質(zhì):若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]D,都存在x0∈[m,n],使得等式f(n)-f(m)=(n-m)f′(x0)成立,試用這一性質(zhì)證明:方程f(x)-x=0只有一個(gè)實(shí)數(shù)根;

(Ⅲ)設(shè)x1是方程f(x)-x=0的實(shí)數(shù)根,求證:對(duì)于f(x)定義域中任意的x2,x3,當(dāng)|x2-x1|<1,且|x3-x1|<1時(shí),|f(x3)-f(x2)|<2.

查看答案和解析>>

(本小題滿分13分)
設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足”.
(1)判斷函數(shù)是否是集合M中的元素,并說明理由;
(2)若集合M中的元素具有下面的性質(zhì):“若的定義域?yàn)镈,則對(duì)于任意,都存在,使得等式成立”,試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;
(3)設(shè)是方程的實(shí)數(shù)根,求證:對(duì)于定義域中的任意的,當(dāng)時(shí),

查看答案和解析>>

(本小題滿分13分)

設(shè)M是由滿足下列條件的函數(shù)構(gòu)成的集合:“①方程有實(shí)數(shù)根;②函數(shù)的導(dǎo)數(shù)滿足”.

(1)判斷函數(shù)是否是集合M中的元素,并說明理由;

(2)若集合M中的元素具有下面的性質(zhì):“若的定義域?yàn)镈,則對(duì)于任意,都存在,使得等式成立”,試用這一性質(zhì)證明:方程只有一個(gè)實(shí)數(shù)根;

(3)設(shè)是方程的實(shí)數(shù)根,求證:對(duì)于定義域中的任意的,當(dāng)時(shí),

 

 

查看答案和解析>>

設(shè)M是由滿足下列條件的函數(shù)f(x)構(gòu)成的集合:“① 方程f(x)-x=0有實(shí)數(shù)根;② 函數(shù)f(x)的導(dǎo)數(shù)(x)滿足0<(x)<1”.

(Ⅰ)判斷函數(shù)f(x)=是否是集合M中的元素,并說明理由;

(Ⅱ )集合M中的元素f(x)具有下面的性質(zhì):“若f(x)的定義域?yàn)镈,則對(duì)于任意[m,n]D,都存在x0∈ [m,n],使得等式f(n)-f(m)=(n-m)(x0)成立”,試用這一性質(zhì)證明:方程f(x)-x=0只有一個(gè)實(shí)數(shù)根;

(Ⅲ)設(shè)x1是方程f(x)-x=0的實(shí)數(shù)根,求證:對(duì)于f(x)定義域中任意的x2,x3,當(dāng),且時(shí),.

查看答案和解析>>

 

1.B    2 D.  3.B    4.C      5.C     6.C    7.B    8.C    9.D   10.B

11.D   12.B

13.240   14.1     15.  16. ①②③

17.(本題滿分10分)

解:(Ⅰ)由

       

(Ⅱ)

同理:

   

,.

18.(本題滿分12分)

解:(Ⅰ)記“這批太空種子中的某一粒種子既發(fā)芽又發(fā)生基因突變”為事件,則.    

(Ⅱ)

19.(本題滿分12分)

  (Ⅰ)∵,∴{}是公差為4的等差數(shù)列,

a1=1, =+4(n-1)=4n-3,∵an>0,∴an= 

(Ⅱ)bn=Sn+1Sn=an+12=,由bn<,得m>,

設(shè)g(n)= ,∵g(n)= n∈N*上是減函數(shù),

g(n)的最大值是g(1)=5,

m>5,存在最小正整數(shù)m=6,使對(duì)任意n∈N*bn<成立

20.(本題滿分12分)

解法一:

(I)設(shè)的中點(diǎn),連結(jié),則四邊形為正方形,

.故,,即

學(xué)科網(wǎng)(Zxxk.Com),

平面,                                   

(II)由(I)知平面,

平面

的中點(diǎn), 連結(jié),又,則

的中點(diǎn),連結(jié),則,.

為二面角的平面角.

連結(jié),在中,,,

的中點(diǎn),連結(jié),

中,,,

二面角的余弦值為

解法二:

(I)以為原點(diǎn),所在直線分別為軸,軸,軸建立如圖所示的空間直角坐標(biāo)系,則,,,,.

學(xué)科網(wǎng)(Zxxk.Com),,

又因?yàn)?sub> 所以,平面.

(II)設(shè)為平面的一個(gè)法向量.

,,

    取,則

,,設(shè)為平面的一個(gè)法向量,

,,得,則

設(shè)的夾角為,二面角,顯然為銳角,

,

21.(本題滿分12分)    

解:(Ⅰ) ,上是增函數(shù),在上是減函數(shù),

∴當(dāng)時(shí), 取得極大值.

.

,,

則有 ,

遞增

極大值4

遞減

極小值0

遞增

所以, 當(dāng)時(shí),函數(shù)的極大值為4;極小值為0; 單調(diào)遞增區(qū)間為.

(Ⅱ) 由(Ⅰ)知, ,的兩個(gè)根分別為. ∵上是減函數(shù),∴,即,

.

22.(本題滿分12分)

解:(I)依題意,可知,

 ,解得

∴橢圓的方程為

(II)直線與⊙相切,則,即,

,得,

∵直線與橢圓交于不同的兩點(diǎn)設(shè)

       ∴,

設(shè),則

上單調(diào)遞增          ∴.

 

 

 


同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 亚洲一区二区三区在线播放 | 九九人人| 日本不卡在线观看 | 午夜欧美一区二区三区在线播放 | 久久久久亚洲精品 | 欧美一级大片免费 | 综合精品久久久 | 91成人免费看片 | 黄色一级毛片 | 国产片侵犯亲女视频播放 | 自拍偷拍第一页 | 国产成在线观看免费视频 | 精品无人乱码区1区2区3区 | 日韩精品123 | 免费看a | 青青草视频网站 | 日韩在线一区二区 | 亚洲综合色自拍一区 | 国产一区a| 久久伊人一区 | 中文字幕第一页在线视频 | 久久久久久久久99精品 | 国产成人免费视频 | 欧美视频一区二区三区四区 | 综合久久综合久久 | 韩日中文字幕 | 97伦理电影 | 亚洲欧洲无码一区二区三区 | 一级在线观看 | 国产精品人人做人人爽人人添 | 亚洲天堂免费 | www.久久久.com | 国产精品美女久久久久久久久久久 | 久久久久久综合 | 999热在线| 欧美成人激情视频 | 久久久久久国产视频 | 色噜| 国产一区二区三区免费在线观看 | 欧美亚洲视频 | 久草免费在线 |