日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

39.如圖.四邊形ABCD中.AD=CD.∠DAB=∠ACB=90°.過點D作DE⊥AC.垂足為F.DE與AB相交于點E.(1)求證:AB?AF=CB?CD, 查看更多

 

題目列表(包括答案和解析)

如圖,四邊形ABCD中,AD∥BC,AC與BD相交于點O,
(1)△ABC與△DBC的面積相等嗎?為什么?
(2)若S△AOB=21cm2,求S△COD
(3)若S△AOD=10cm2,且BO:OD=2:1,求S△ABD

查看答案和解析>>

精英家教網如圖,四邊形ABCD中,AD∥BC,∠ABD=30°,AB=AD,DC⊥BC于點C,若BD=2,求CD的長.

查看答案和解析>>

精英家教網如圖,四邊形ABCD中,AD∥BC,∠ABC=∠BAD=90°,AB為⊙O的直徑.
(1)若AD=2,AB=BC=8,連接OC、OD.
①求△COD的面積;
②試判斷直線CD與⊙O的位置關系,說明理由.
(2)若直線CD與⊙O相切于F,AD=x(x>0),AB=8.試用x表示四邊形ABCD的面積S,并探索S是否存在最小值,寫出探索過程.

查看答案和解析>>

如圖,四邊形ABCD中,AD∥BC.
①畫線段CE⊥AB,垂足為E,畫線段AF⊥CD,垂足為F;
②比較下列兩組線段的大小:(用“>”或“<”或“=”填空)
CE
CA,點C到AB的距離
點A到CD的距離.

查看答案和解析>>

(2012•江寧區一模)如圖,四邊形ABCD中,AD=CD,∠DAB=∠ACB=90°,過點D作DE⊥AC,垂足為F,DE與AB相交于點E,AB=15cm,BC=9cm,
(1)點E是AB的中點嗎?為什么?
(2)若P是射線DE上的動點.設DP=x cm(x>0),四邊形BCDP的面積為y cm2
①求y關于x的函數關系式;
②當x為何值時,△PBC的周長最小,并求出此時四邊形BCDP的面積.

查看答案和解析>>

一、填空題:

160°.

2.答案不惟一,如:AE=CF,∠AEB=∠CFD,∠ ABE=∠CDF;

3.1;

4.4。

5.60

7.2-2     

8.15。

9.5

10.4

11.5

12. 2,3,n。

14.

 

15. (-8,0)。

 

16.6。

17. .平行四邊形。

18.60

19.4,12           

二、選擇題:

1.C

 

2.C

3.B

4.B

 

5.B

6.A

 

7.C。

 

8.B。

 

9.C

 

10.D

 

 

11.C。

 

12.B

13.B 

14.C 

15.D

16. C

17.C   

18.D    

19.D

20.C

21.D

22.D。

三、解答題:

11如圖答2,因為AD∥BC,AB∥DC  ------------------------------------------------- 2分

所以四邊形ABCD為平行四邊形.---------------------------------------------------------------- 3分

分別過點B、D作BF⊥AD,DE⊥AB,垂足分別為點E、F.

則BE = CF.-------------------------------------------------------------------------------------------- 4分

因為∠DAB =∠BAF,所以Rt△DAB≌Rt△BAF.--------------------------------------------- 5分

所以AD = AB.            

所以四邊形ABCD為菱形.-------------------------------------------------------------------------- 6分

(2存在最小值和最大值.-------------------------------------------------------------------------- 7分

① 當∠DAB = 90°時,菱形ABCD為正方形,周長最小值為8;---------------------------8分

② 當AC為矩形紙片的對角線時,設AB = x,如圖答3,在Rt△BCG中,

.所以周長最大值為17.-------------------------------------------9分

          

 

 

                                                                                                 

 

 

 

 

 

 

 

 

  2.證明:  ∵EF垂直平分AC,∴EF⊥AC,且AO=CO-------------------------------1′       

              證得:△AOE≌△COF-----------------------------------------------------------3′

          證得:四邊形AECF是平行四邊形------------------------------------------------5′

       由AC⊥EF可知:四邊形AECF是菱形 -------------------------------------------6′

 

 

5.(本題滿分8分)

解:(1)方法一:如圖①

∵在 ABCD中,ADBC

∴∠DAB+∠ABC=180°                  ………………………1分

AEBF分別平分∠DAB和∠ABC

∴∠DAB=2∠BAE,∠ABC=2∠ABF              ………………………2分

∴2∠BAE+2∠ABF=180°

即∠BAE+∠ABF=90°                 ………………………3分

∴∠AMB=90°

AEBF                                     …………………………4分

        圖②

         

         

         

         

         

         

        方法二:如圖②,延長BC、AE相交于點P     

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                               …………………………1分

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                               …………………………2分

        ∴∠APB=∠PAB

        ∴AB=BP                                                                   ………………………3分

        ∵BF平分∠ABP

        ∴:AP⊥BF

        即AE⊥BF.                                                            ………………………4分

        (2)方法一:線段DFCE是相等關系,即DF=CE     ………………5分

        ∵在ABCD中,CDAB

        ∴∠DEA=∠EAB

        又∵AE平分∠DAB

        ∴∠DAE=∠EAB

        ∴∠DEA=∠DAE

        DEAD                                         ………………………6分

        同理可得,CFBC                               ………………………7分

        又∵在ABCD中,ADBC

        DECF

        DEEFCFEF

        DFCE.                                         ………………………8分

        方法二:如右圖,延長BC、AE設交于點P,延長AD、BF相交于點O       …5分

        ∵在ABCD中,AD∥BC

        ∴∠DAP=∠APB                                                   

        ∵AE平分∠DAB

        ∴∠DAP=∠PAB                                                  

        ∴∠APB=∠PAB

        ∴BP=AB

        同理可得,AO=AB                 

            ∴AO=BP                                   ………………………6分

                ∵在ABCD中,AD=BC

                ∴OD=PC

         又∵在ABCD中,DC∥AB

               ∴△ODF∽△OAB,△PCE∽△PBA                  ………………………7分

               ∴

               ∴DF=CE.                                                                     ………………………8分

         

        6. (1)(2)略   (3)設BC=x,則DC=x  ,BD=,CF=(-1)x

        GD2=GE?GB=4-2      DC2+CF2=(2GD)2   即 x2+(-1)2x2=4(4-2

        (4-2)x2=4(4-2)    x2=4   正方形ABCD的面積是4個平方單位

         

         

        7.(本小題滿分5分)

        證明:∵  AB∥CD

        ∴                …………1分

        ∵ 

        ∴  △ABO≌△CDO                 …………3分

        ∴                      …………4分

        ∴  四邊形ABCD是平行四邊形       …………5分

         

         

         

         

         

        11.證明:(1)①在中,

        ,????????????????????????????????????????????????????????????????????????? 2分

        .????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 4分

         

        12.(本題7分)

        解:(1)在梯形中,

        .?????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        .???????????????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .?????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        的函數表達式是

        ;??????????????????????????????????????????????????????????????????????????????????????? 5分

        (2)

        .?????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        時,有最大值,最大值為.??????????????????????????????????????????????????????????????????? 7分

         

         

         

        13.證明:菱形中,.???????????????????? 1分

        分別是的中點,

        .?????????????????? 3分

        .????????????????? 5分

        .??????????????????????????????? 7分

        14.

        15.證明:四邊形是平行四邊形,

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 1分

        平分.????????????????????????????????????????????????????????????????? 2分

        .??????????????????????????????????????????????????????????????????????????????????????????????????? 3分

        .??????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        .???????????????????????????????????????????????????????????????????????????????????? 5分

         

        16.解:(1)①40.?????????????????????????????????????????????????????????????????????????????????????????????????????? 2分

        ②0. ??????????????????????????????????????????????????????????????????????????????????????????????????????????????????????????? 4分

        (2)不合理.例如,對兩個相似而不全等的矩形來說,它們接近正方形的程度是相同的,但卻不相等.合理定義方法不唯一,如定義為越小,矩形越接近于正方形;越大,矩形與正方形的形狀差異越大;當時,矩形就變成了正方形.???????????????????????????????????????????????????????????????????????????????????????????????????????????????? 6分

        17.解:(1)正方形中,

        ,因此,即菱形的邊長為

        中,

        ,即菱形是正方形.

        同理可以證明

        因此,即點邊上,同時可得

        從而.????????????????????????????????????????????????????????????????????????????????????????? 2分

        (2)作為垂足,連結

        中,

        ,即無論菱形如何變化,點到直線的距離始終為定值2.

        因此.??????????????????????????????????????????????????????????????????????????? 6分

        (3)若,由,得,此時,在中,

        相應地,在中,,即點已經不在邊上.

        故不可能有.???????????????????????????????????????????????????????????????????????????????????????????????? 9分

        另法:由于點在邊上,因此菱形的邊長至少為

        當菱形的邊長為4時,點邊上且滿足,此時,當點逐漸向右運動至點時,的長(即菱形的邊長)將逐漸變大,最大值為

        此時,,故

        而函數的值隨著的增大而減小,

        因此,當時,取得最小值為

        又因為,所以,的面積不可能等于1.????????????????????? 9分

        18.

        19.證明:在等腰中,

             .又

             .????????????????????????????????????????????????????????????????????????? 3分

             

             .?????????????????? 5分

             又不平行,四邊形是梯形.??????????????????????????????????? 7分

             四邊形是等腰梯形.(理由:同一底上的兩底角相等的梯形是等腰梯形,或兩腰相等的梯形是等腰梯形)?????????????????????????????????????????????????????????????????????????????????????????????????????? 8分

         

        20.解:(1)在矩形中,

        .……………………1分

            

            ,即

        同步練習冊答案
        主站蜘蛛池模板: 日本一区二区三区四区视频 | 日韩国产在线 | 久久久久99| 久久精品久久精品国产大片 | 午夜精品久久久久久久99樱桃 | 超碰在线观看免费 | 超碰天天 | 亚洲第一av | 精品国产一区二区三区在线观看 | 亚洲三区在线观看 | 日韩欧美国产一区二区三区 | 日韩免费高清视频 | 精品国产一区二区三区四区 | 青青草在线免费视频 | 亚洲精品福利 | 日本涩涩网站 | 亚洲精品成人av | 国产午夜精品一区二区三区 | 羞羞视频免费在线观看 | 美女操网站| 国产二区免费 | 四虎国产成人永久精品免费 | 亚洲 精品 综合 精品 自拍 | 日韩视频精品在线 | 亚洲人人草| 天天久久 | 羞羞色影院 | 在线免费毛片 | av黄色在线 | 久久国产成人 | 国产一区二区三区久久99 | av一区二区三区四区 | 91精品一区二区三区久久久久久 | 九色在线播放 | 国产日韩视频在线播放 | 精品视频在线观看 | 特黄特黄a级毛片免费专区 亚洲国产成人在线视频 | 精品久久久久久久久久久久 | 欧美久久一区二区 | 操网 | 一区二区三区在线观看免费 |