日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

.解:(1)由題意-1分 因為上為增函數 查看更多

 

題目列表(包括答案和解析)

已知函數f(x)=ex-ax,其中a>0.

(1)若對一切x∈R,f(x) 1恒成立,求a的取值集合;

(2)在函數f(x)的圖像上去定點A(x1, f(x1)),B(x2, f(x2))(x1<x2),記直線AB的斜率為k,證明:存在x0∈(x1,x2),使恒成立.

【解析】解:.

單調遞減;當單調遞增,故當時,取最小值

于是對一切恒成立,當且僅當.        ①

時,單調遞增;當時,單調遞減.

故當時,取最大值.因此,當且僅當時,①式成立.

綜上所述,的取值集合為.

(Ⅱ)由題意知,

,則.當時,單調遞減;當時,單調遞增.故當

從而

所以因為函數在區間上的圖像是連續不斷的一條曲線,所以存在使成立.

【點評】本題考查利用導函數研究函數單調性、最值、不等式恒成立問題等,考查運算能力,考查分類討論思想、函數與方程思想等數學方法.第一問利用導函數法求出取最小值對一切x∈R,f(x) 1恒成立轉化為從而得出求a的取值集合;第二問在假設存在的情況下進行推理,然后把問題歸結為一個方程是否存在解的問題,通過構造函數,研究這個函數的性質進行分析判斷.

 

查看答案和解析>>

已知函數,其中.

  (1)若處取得極值,求曲線在點處的切線方程;

  (2)討論函數的單調性;

  (3)若函數上的最小值為2,求的取值范圍.

【解析】第一問,處取得極值

所以,,解得,此時,可得求曲線在點

處的切線方程為:

第二問中,易得的分母大于零,

①當時, ,函數上單調遞增;

②當時,由可得,由解得

第三問,當時由(2)可知,上處取得最小值

時由(2)可知處取得最小值,不符合題意.

綜上,函數上的最小值為2時,求的取值范圍是

 

查看答案和解析>>

已知函數

(1)求函數的定義域;

(2)求函數在區間上的最小值;

(3)已知,命題p:關于x的不等式對函數的定義域上的任意恒成立;命題q:指數函數是增函數.若“p或q”為真,“p且q”為假,求實數m的取值范圍.

【解析】第一問中,利用由 即

第二問中,得:

第三問中,由在函數的定義域上 的任意,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時;當命題p為假,命題q為真時分為兩種情況討論即可 。

解:(1)由 即

(2)得:

(3)由在函數的定義域上 的任意,當且僅當時等號成立。當命題p為真時,;而命題q為真時:指數函數.因為“p或q”為真,“p且q”為假,所以

當命題p為真,命題q為假時,

當命題p為假,命題q為真時,

所以

 

查看答案和解析>>

已知函數 R).

(Ⅰ)若 ,求曲線  在點  處的的切線方程;

(Ⅱ)若  對任意  恒成立,求實數a的取值范圍.

【解析】本試題主要考查了導數在研究函數中的運用。

第一問中,利用當時,

因為切點為(), 則,                 

所以在點()處的曲線的切線方程為:

第二問中,由題意得,即可。

Ⅰ)當時,

,                                  

因為切點為(), 則,                  

所以在點()處的曲線的切線方程為:.    ……5分

(Ⅱ)解法一:由題意得,.      ……9分

(注:凡代入特殊值縮小范圍的均給4分)

,           

因為,所以恒成立,

上單調遞增,                            ……12分

要使恒成立,則,解得.……15分

解法二:                 ……7分

      (1)當時,上恒成立,

上單調遞增,

.                  ……10分

(2)當時,令,對稱軸

上單調遞增,又    

① 當,即時,上恒成立,

所以單調遞增,

,不合題意,舍去  

②當時,, 不合題意,舍去 14分

綜上所述: 

 

查看答案和解析>>

如圖,,…,,…是曲線上的點,,…,,…是軸正半軸上的點,且,…,,… 均為斜邊在軸上的等腰直角三角形(為坐標原點).

(1)寫出之間的等量關系,以及之間的等量關系;

(2)求證:);

(3)設,對所有恒成立,求實數的取值范圍.

【解析】第一問利用有得到

第二問證明:①當時,可求得,命題成立;②假設當時,命題成立,即有則當時,由歸納假設及

第三問 

.………………………2分

因為函數在區間上單調遞增,所以當時,最大為,即

解:(1)依題意,有,………………4分

(2)證明:①當時,可求得,命題成立; ……………2分

②假設當時,命題成立,即有,……………………1分

則當時,由歸納假設及

解得不合題意,舍去)

即當時,命題成立.  …………………………………………4分

綜上所述,對所有.    ……………………………1分

(3) 

.………………………2分

因為函數在區間上單調遞增,所以當時,最大為,即

.……………2分

由題意,有. 所以,

 

查看答案和解析>>


同步練習冊答案
主站蜘蛛池模板: 国产精品久久二区 | 欧美a一级 | 久久久久久久91 | 欧美日韩国产一区 | 日韩美香港a一级毛片免费 欧美一极视频 | 色婷婷综合在线 | 亚洲男人的天堂网站 | 国产精品久久久久国产a级 日韩在线二区 | 黄色av网| 国产视频一区在线 | 国产成人一区二区三区影院在线 | 黄色片在线 | 高清久久 | 午夜视频在线免费观看 | 欧美精品一区二区三区在线 | 超碰人人爽 | 国产日韩欧美视频 | 国产成人精品一区二 | 销魂美女一区二区三区视频在线 | 日韩毛片免费视频 | 久久久精品免费观看 | 日韩久久精品电影 | 婷婷色国产偷v国产偷v小说 | 亚洲区视频在线 | 国产成人免费视频网站视频社区 | 亚洲高清视频在线 | av手机电影 | 污视频链接 | 亚洲一区视频 | 亚洲成人av在线 | 在线影院av | 一区二区三区日韩 | 免费观看黄色一级大片 | 不卡一区 | 精品亚洲一区二区三区 | 国产精品一区久久久久 | 久草日本 | 欧美一级在线观看 | 欧美一区 | 九九综合九九 | 日韩午夜在线视频 |