題目列表(包括答案和解析)
已知橢圓的離心率為,且其焦點F(c,0)(c>0)到相應準線l的距離為3,過焦點F的直線與橢圓交于A、B兩點。
(1)求橢圓的標準方程;
(2)設M為右頂點,則直線AM、BM與準線l分別交于P、Q兩點,(P、Q兩點不重合),求證:
已知橢圓的離心率為
,且經過點
. 過它的兩個焦點
,
分別作直線
與
,
交橢圓于A、B兩點,
交橢圓于C、D兩點,且
.
(1)求橢圓的標準方程;
(2)求四邊形的面積
的取值范圍.
已知橢圓的離心率為
,
軸被拋物線
截得的線段長等于
的長半軸長.
(1)求的方程;
(2)設與
軸的交點為
,過坐標原點
的直線
與相交于
兩點,直線
分別與
相交于
.
①證明:為定值;
②記的面積為
,試把
表示成
的函數,并求
的最大值.
已知橢圓的離心率為
,兩焦點之間的距離為4.
(Ⅰ)求橢圓的標準方程;
(Ⅱ)過橢圓的右頂點作直線交拋物線于A、B兩點,
(1)求證:OA⊥OB;
(2)設OA、OB分別與橢圓相交于點D、E,過原點O作直線DE的垂線OM,垂足為M,證明|OM|為定值.
已知橢圓的離心率為
,其左、右焦點分別為
,點
是橢圓上一點,且
,
(
為坐標原點).
(Ⅰ)求橢圓的方程;
(Ⅱ)過點且斜率為
的動直線
交橢圓于
兩點,在
軸上是否存在定點
,使以
為直徑的圓恒過這個點?若存在,求出
的坐標,若不存在,說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com