日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(Ⅰ)當時.用表示, 查看更多

 

題目列表(包括答案和解析)

(Ⅰ)設為兩個不共線的向量,,試用為基底表示向量
(Ⅱ)已知向量,當k為何值時,?平行時它們是同向還是反向?

查看答案和解析>>


(1)當時,求橢圓的標準方程及其右準線的方程;
(2)用表示P點的坐標;
(3)是否存在實數,使得的邊長是連續的自然數,若存在,求出這樣的實數;若不存在,請說明理由.

查看答案和解析>>

(Ⅰ)設
e1
 , 
e2
為兩個不共線的向量,
a
=-
e1
+3
e2
 , 
b
=4
e1
+2
e2
 , 
c
=-3
e1
+12
e2
,試用
b
 , 
c
為基底表示向量
a

(Ⅱ)已知向量
a
=( 3 , 2 ) , 
b
=( -1 , 2 ) , 
c
=( 4 , 1 )
,當k為何值時,
a
+k
c
 )
( 2
b
-
a
 )
?平行時它們是同向還是反向?

查看答案和解析>>

 設函數

(1)當 時,用表示的最大值

(2)當時,求的值,并對此值求的最小值;

(3)問取何值時,方程=上有兩解?

查看答案和解析>>

有時可用函數f(x)=
0.1+15ln
a
a-x
x≤6
x-4.4
x-4
x>6
,描述學習某學科知識的掌握程度.其中x表示某學科知識的學習次數(x∈N*),f(x)表示對該學科知識的掌握程度,正實數a與學科知識有關.
(1)證明:當x≥7時,掌握程度的增長量f(x+1)-f(x)總是下降;
(2)根據經驗,學科甲、乙、丙對應的a的取值區間分別為(115,121],(121,127],(127,133].當學習某學科知識6次時,掌握程度是85%,請確定相應的學科.

查看答案和解析>>

一、學科網(Zxxk.Com)

1.C       2.A      3.D      4.C       5.A      6.B       7.A      8.C       9.D      10.C 學科網(Zxxk.Com)

11.D     12.B學科網(Zxxk.Com)

1~5略學科網(Zxxk.Com)

6.學科網(Zxxk.Com)

7.解:學科網(Zxxk.Com)

       學科網(Zxxk.Com)

       學科網(Zxxk.Com)

其展開式中含的項是:,系數等于學科網(Zxxk.Com)

8.解:根據題意:學科網(Zxxk.Com)

9.解:,橢圓離心率為學科網(Zxxk.Com)

10.解:依腰意作出圖形.取中點,連接,則,不妨設四面體棱長為2,則是等腰三角形,必是銳角,就是所成的角,學科網(Zxxk.Com)

學科網(Zxxk.Com)

11.解:已知兩腰所在直線斜率為1,,設底邊所在直線斜率為,已知底角相等,由到角公式得:學科網(Zxxk.Com)

學科網(Zxxk.Com)

       ,解得學科網(Zxxk.Com)

       由于等腰三角底邊過點(,0)則只能取學科網(Zxxk.Com)

12.解:如圖,正四面體中,學科網(Zxxk.Com)

       學科網(Zxxk.Com)

中心,連,此四面體內切球與外接球具有共同球心必在上,并且等于內切球半徑,等于外接球半徑.記面積為,則學科網(Zxxk.Com)

,從而學科網(Zxxk.Com)

二、學科網(Zxxk.Com)

13..解:共線學科網(Zxxk.Com)

14..解:,曲線在(1,0)處的切線與直線垂直,則的傾角是學科網(Zxxk.Com)

15.曲線      ①,化作標準形式為,表示橢圓,由于對稱性.取焦點,過且傾角是135°的弦所在直線方程為:,即②,聯立式①與式②.消去y,得:,由弦長公式得:

16.充要條件①:底面是正三角形,頂點在底面的射影恰是底面的中心.

充要條件②:底面是正三角形.且三條側棱長相等,

充要條件③:底面是正三角形,且三個側面與底面所成角相等.

再如:底面是正三角形.且三條側棱與底面所成角相等;三條側棱長相等,且三個側面與底面所成角相等;三個側面與底面所成角相等,三個側面兩兩所成二面角相等.

三、

17.解:,則.由正弦定理得

      

      

      

18.(1)證:已知是正三棱柱,取中點中點,連,則兩兩垂直,以軸建立空間直角坐標系,又已知

,則,又因相交,故

(2)解:由(1)知,是面的一個法向量.

             

,設是面的一個法向量,則①,②,取,聯立式①、②解得,則

              二面角是銳二面角,記其大小為.則

             

二面角的大小,亦可用傳統方法解(略).

19.解:已知各投保學生是否出險相互獨立,且每個投保學生在一年內出險的概率都是,記投保的5000個學生中出險的人數為,則(5000,0.004)即服從二項分布.

(1)記“保險公司在學平險險種中一年內支付賠償金至少5000元”為事件A,則

             

             

(2)該保險公司學平險除種總收入為元=25萬元,支出成本8萬元,支付賠償金5000元=0.5萬元,盈利萬元.

~知,

進而萬元.

故該保險公司在學平險險種上盈利的期望是7萬元.

20.解(1):由,即

              ,而

由表可知,上分別是增函數,在上分別是減函數.

.   

(2)時,等價于,記

,因

上是減函數,,故

時,就是,顯然成立,綜上可得的取值范圍是:

22.解:(1)由條件可知橢圓的方程是:

             

                ①,直線的方程是            ②,

聯立式①、②消去并整理得,由此出發時,是等比數列,

(2)由(1)可知,.當時,

      

      

       是遞減數列

       對恒成立

       時,是遞減數列.

21.解(1):,由解得函數定義域呈

              ,由解得,列表如下:

0

0

極大

極小

              解得,進而求得中點

              己知在直線上,則

       (2)

,則,點到直線的距離

,由于直線與線段相交于,則,則

,則

其次,,同理求得的中離:

,即,由

時,

,當時,.注意到,由對稱性,時仍有

 

,進而

故四邊形的面積:

時,

 


同步練習冊答案
主站蜘蛛池模板: 日韩精品一区二区三区四区五区 | 日本xxxxxxxxxxxxxxx | 亚洲日本精品一区二区三区 | 精品一区电影国产 | 国产第3页 | 日日噜噜噜夜夜爽爽狠狠小说 | 四虎影城| 欧美日韩中文字幕在线 | 国产精品久久久久久久久久 | 91精品久久久久久 | 中文字幕日韩在线 | 欧美精品日韩 | 亚洲欧美日韩精品 | 看真人视频a级毛片 | 成人爽a毛片一区二区免费 美女一级毛片 | 婷婷成人在线 | 欧美成人精品在线观看 | 日韩欧美中文在线 | 黄色国产一级视频 | 久久久久久久久网站 | 色.com| 欧美精品网站 | 百性阁综合另类 | xxxx性欧美 | 天天操综合网 | 另类 综合 日韩 欧美 亚洲 | 岛国av在线| 亚洲欧美一区二区三区视频 | 在线观看不卡一区 | 精品视频免费在线 | 正在播放国产精品 | 污视频网站在线观看 | 在线观看av免费 | 国产精品免费观看 | 欧美日韩另类在线 | 国产一区二区播放 | 国产成人av免费 | 欧美日韩不卡 | 色com| 久久久精品综合 | 亚洲精品久久久久午夜 |