日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

上.且.點M的軌跡為C. (1)求曲線C的方程, 查看更多

 

題目列表(包括答案和解析)

已知曲線C:y=x2與直線l:x-y+2=0交于兩點A(xA,yA)和B(xB,yB),且xA<xB。記曲線C在點A和點B之間那一段L與線段AB所圍成的平面區(qū)域(含邊界)為D。設(shè)點P(s,t)是L上的任一點,且點P與點A和點B均不重合,
(1)若點Q是線段AB的中點,試求線段PQ的中點M的軌跡方程;
(2)若曲線G:x2-2ax+y2-4y+a2+=0與點D有公共點,試求a的最小值。

查看答案和解析>>

已知,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以為焦點的橢圓。

(1)求曲線C的方程;

(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標(biāo)準(zhǔn)方程;

(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。

 

查看答案和解析>>

已知,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以為焦點的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。

查看答案和解析>>

如圖所示,點N在圓x2+y2=4上運動,DN⊥x軸,點M在DN的延長線上,且(λ>0),
(1)求點M的軌跡方程,并求當(dāng)λ為何值時M的軌跡表示焦點在x軸上的橢圓;
(2)當(dāng)λ=時,(1)所得曲線記為C,已知直線l:+y=1,P是l上的動點,射線OP(O為坐標(biāo)原點)交曲線C于點R,又點Q在OP上且滿足|OQ|·|OP|=|OR|2,求點Q的軌跡方程。

查看答案和解析>>

已知,圓,一動圓在軸右側(cè)與軸相切,同時與圓相外切,此動圓的圓心軌跡為曲線C,曲線E是以為焦點的橢圓。
(1)求曲線C的方程;
(2)設(shè)曲線C與曲線E相交于第一象限點P,且,求曲線E的標(biāo)準(zhǔn)方程;
(3)在(1)、(2)的條件下,直線與橢圓E相交于A,B兩點,若AB的中點M在曲線C上,求直線的斜率的取值范圍。

查看答案和解析>>

一、選擇題(本大題共12小題,每題5分,共60分)

1.A    2.B    3.C    4.A    5.D    6.C    7.B    8.C    9.A

10.B   11.(理)C(文)B       12.D

二、填空題(本大題共4小題,每題4分,共16分)

13.                            14.②③                  15.47                     16.□

三、解答題(本大題共6小題,共計76分)

17.解:(1)依題意函數(shù)的圖象按向量平移后得

                                                ………………………2分

       即=                                                ………………………4分

       又

       比較得a=1,b=0                                                                     ………………………6分

   (2)

       =                                                              ………………………9分

      

      

       ∴的單調(diào)增區(qū)間為[]          ……………………12分

18.解:

   (1)設(shè)連對的個數(shù)為y,得分為x

       因為y=0,1,2,4,所以x=0,2,4,8.

      

x

0

2

4

8

   

       于是x的分布列為

    ……9分

     

     

       (2)Ex=0×+2×+4×+8×=2

           即該人得分的期望為2分。                                                     ……………………12分

       (文)

       (1)從口袋A中摸出的3個球為最佳摸球組合即為從口袋A中摸出2個紅球和一個黑球

           其概念為                                                     ……………………6分

       (2)由題意知:每個口袋中摸球為最佳組合的概率相同,從5個口袋中摸球可以看成5

           次獨立重復(fù)試驗,故所求概率為………………………12分

    19.解法一:以D為原點,DA,DC,DD1

           所在直線分別為x軸、y軸、z軸,建

           立空間直角坐標(biāo)系D―xyz,則

           A(a,0,0)、B(a,2a,0)、

           C(0,2a,0)、A1(a,0,a)、

           D1(0,0,a)。E、P分別是BC、A1D1

           的中點,M、N分別是AE、CD1的中點

           ∴……………………………………2分

       (1)⊥面ADD1A1

           而=0,∴,又∵MN面ADD1A1,∴MN∥面ADD1A1;………4分

       (2)設(shè)面PAE的法向量為,又

           則又

           ∴=(4,1,2),又你ABCD的一個法向量為=(0,0,1)

           ∴

           所以二面角P―AE―D的大小為                        ………………………8分

       (3)設(shè)為平面DEN的法向量

           又=(),=(0,a),,0,a)

           ∴所以面DEN的一個法向量=(4,-1,2)

           ∵P點到平面DEN的距離為

           ∴

          

           所以                                              ……………………12分

           解法二:

       (1)證明:取CD的中點為K,連接

           ∵M,N,K分別為AE,CD1,CD的中點

           ∴MK∥AD,ND∥DD1,∴MK∥面ADD1A1,NK∥面ADD1A1

           ∴面MNK∥面ADD1A1,∴MN∥面ADD1A1,                      ………………………4分

       (2)設(shè)F為AD的中點,∵P為A1D1的中點

           ∴PF∥DD1,PF⊥面ABCD

           作FH⊥AE,交AE于H,連結(jié)PH,則由三垂

           線定理得AE⊥PH,從而∠PHF為二面角

           P―AE―D的平面角。

           在Rt△AAEF中,AF=,EF=2,AE=

           從而FH=

           在Rt△PFH中,tan∠PHF=

           故:二面角P―AE―D的大小為arctan

       (3)

           作DQ⊥CD1,交CD1于Q,

           由A1D1⊥面CDD1C1,得A1D1⊥DQ,∴DQ⊥面BCD1A1

           在Rt△CDD1中,

           ∴  ……………………12分

    20.解:(理)

       (1)函數(shù)的定義域為(0,+

           當(dāng)a=-2e時,              ……………………2分

           當(dāng)x變化時,的變化情況如下:

    (0,

    ,+

    0

    極小值

           由上表可知,函數(shù)的單調(diào)遞減區(qū)間為(0,

           單調(diào)遞增區(qū)間為(,+

           極小值是)=0                                                            ……………………6分

       (2)由           ……………………7分

           又函數(shù)為[1,4]上單調(diào)減函數(shù),

           則在[1,4]上恒成立,所以不等式在[1,4]上恒成立。

           即在,[1,4]上恒成立                                           ……………………10分

           又=在[1,4]上為減函數(shù)

           ∴的最小值為

           ∴                                                                            ……………………12分

      (文)(1)∵函數(shù)在[0,1]上單調(diào)遞增,在區(qū)間上單調(diào)遞減,

           ∴x=1時,取得極大值,

           ∴

           ∴4-12+2a=0a=4                                                                 ………………………4分

       (2)A(x0,f(x0))關(guān)于直線x=1的對稱點B的坐標(biāo)為(2- x0,f(x0

          

           =

           ∴A關(guān)于直線x=1的對稱點B也在函數(shù)的圖象上            …………………8分

       (3)函數(shù)的圖象與函數(shù)的圖象恰有3個交點,等價于方程

           恰有3個不等實根,

          

           ∵x=0是其中一個根,

           ∴方程有兩個非零不等實根

                                           ……………………12分

    21.解:(理)(1)由已知得:

                  

           ∵                                                     ①…………………2分

           ∴                                                                 ②

           ②―①

           即

           又

           ∴                                                                      ……………………5分

           ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

       (2)∵

           ∴

           ∴                   …………………8分

           兩式相減

          

           ∴                                                          ……………………10分

           ∴               ……………………12分

       (文)(1)由已知得:

          

           ∴

           ∵                                                     ①…………………2分

           ∴                                                                 ②

           ②―①

           即

           又

           ∴                                                                      ……………………5分

           ∴{an}成等差數(shù)列,且d=1,又a1=1,∴…………………6分

       (2)∵

           ∴

           ∴                   …………………8分

           兩式相減

          

           ∴                                                          ……………………10分

           ∴               ……………………12分

     

    22.解:(1)

           設(shè)M(x,y)是曲線C上任一點,因為PM⊥x軸,

           所以點P的坐標(biāo)為(x,3y)                                                   …………………2分

           點P在橢圓,所以

           因此曲線C的方程是                                           …………………5分

       (2)當(dāng)直線l的斜率不存在時,顯然不滿足條件

           所以設(shè)直線l的方程為與橢圓交于Ax1y1),Bx2y2),N點所在直線方

           程為

           ,由

                                                   ……………………6分

           由△=………………8分

           ∵,所以四邊形OANB為平行四邊形               …………………9分

           假設(shè)存在矩形OANB,則

          

           所以

           即                                                                   ……………………11分

           設(shè)N(),由,得

          

           即N點在直線

           所以存在四邊形OANB為矩形,直線l的方程為 ……………………14分

    主站蜘蛛池模板: 久久久久久久91 | 精品国产一区二区三区成人影院 | 日韩欧美在线观看一区 | 亚洲一区二区视频在线 | 欧美日韩一区二区视频在线观看 | 国产伦精品一区二区三区高清 | 欧美日本色| 亚洲成人一区二区三区 | japanhd熟睡侵犯 | 日韩福利在线观看 | 欧美亚洲二区 | 99精品国产高清一区二区麻豆 | 成人网18免费网站 | 日韩精品免费 | 欧美一区二区三区精品 | 亚洲精品乱码久久久久久不卡 | 欧美美女黄色网 | 国产精品久久久久久亚洲调教 | 久久99国产精一区二区三区 | 日本亚洲欧美 | 欧美五月婷婷 | 国产精品一区在线观看 | 人人草视频在线观看 | 欧美在线观看一区 | 色姑娘综合网 | 日韩精品一区二区三区中文字幕 | 精品视频免费 | 亚洲黄色大片在线观看 | 亚洲一区在线播放 | 伊人网av| 日韩视频在线观看 | 欧美视频二区 | 亚洲成人三级 | 精品一区二区在线免费观看 | 国产99久久精品一区二区永久免费 | 中文字幕天堂 | 不卡二区| 99国产精品| 国产在线二区 | 免费在线观看国产 | 国产成人在线视频 |