題目列表(包括答案和解析)
如圖,拋物線y=x2-2x-8交y軸于點A,交x軸正半軸于點B.
(1)求直線AB對應的函數關系式;
(2)有一寬度為1的直尺平行于y軸,在點A、B之間平行移動,直尺兩長邊所在直線被直線AB和拋物線截得兩線段MN、PQ.設M點的橫坐標為m,且0<m<3.試比較線段MN與PQ的大小.
在平面直角坐標系xOy中,已知二次函數y=x2+mx+n的圖象經過點A(2,0)和點B(1,-
),直線l經過拋物線的頂點且與y軸垂直,垂足為Q.
(1)求該二次函數的表達式;
(2)設拋物線上有一動點P從點B處出發沿拋物線向上運動,其縱坐標y1隨時間t(t≥0)的變化規律為y1=-+2t.現以線段OP為直徑作⊙C.
①當點P在起始位置點B處時,試判斷直線l與⊙C的位置關系,并說明理由;在點P運動的過程中,直線l與⊙C是否始終保持這種位置關系?請說明你的理由;
②若在點P開始運動的同時,直線l也向上平行移動,且垂足Q的縱坐標y2隨時間t的變化規律為y2=-1+3t,則當t在什么范圍內變化時,直線l與⊙C相交?此時,若直線l被⊙C所截得的弦長為a,試求a2的最大值.
已知拋物線y=x2+(2n-1)x+n2-1(n為常數).
(1)當該拋物線經過坐標原點,并且頂點在第四象限時,求出它所對應的函數關系式;
(2)設A是(1)所確定的拋物線上位于x軸下方且在對稱軸左側的一個動點,過點A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于點B,DC⊥x軸于點C.
①當BC=1時,求矩形ABCD的周長;
②當矩形ABCD的周長最大時,求出這個最大值,指出此時點A的坐標.
|
已知拋物線y=x2+(2n-1)x+n2-1(n為常數).
(1)當該拋物線經過坐標原點,并且頂點在第四象限時,求出它所對應的函數關系式;
(2)設A是(1)所確定的拋物線上位于x軸下方、且在對稱軸左側的一個動點,過A作x軸的平行線,交拋物線于另一點D,再作AB⊥x軸于B,DC⊥x軸于C.
①當BC=1時,求矩形ABCD的周長;
②試問矩形ABCD的周長是否存在最大值?如果存在,請求出這個最大值,并指出此時A點的坐標;如果不存在,請說明理由.
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com