日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

已知函數(shù).并且對(duì)于任意的函數(shù) 查看更多

 

題目列表(包括答案和解析)

已知函數(shù),并且對(duì)于任意的函數(shù)的圖象恒經(jīng)過點(diǎn).

(1)求數(shù)列的通項(xiàng)公式;

(2)求(用表示);

(3)求證:若,則有.

查看答案和解析>>

已知函數(shù)滿足:對(duì)于任意實(shí)數(shù),都有恒成立,且當(dāng)時(shí),恒成立;

(1)求的值,并例舉滿足題設(shè)條件的一個(gè)特殊的具體函數(shù);

(2)判定函數(shù)在R上的單調(diào)性,并加以證明;

(3)若函數(shù)(其中)有三個(gè)零點(diǎn),求的取值范圍.

 

查看答案和解析>>

已知函數(shù),設(shè)

.  

(1)猜測(cè)并直接寫出的表達(dá)式;此時(shí)若設(shè),且關(guān)于的函數(shù)在區(qū)間上的最小值為,則求的值;

(2)設(shè)數(shù)列為等比數(shù)列,數(shù)列滿足,若 ,其中,則

①當(dāng)時(shí),求

②設(shè)為數(shù)列的前項(xiàng)和,若對(duì)于任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.

 

查看答案和解析>>

已知函數(shù),設(shè)
.  
(1)猜測(cè)并直接寫出的表達(dá)式;此時(shí)若設(shè),且關(guān)于的函數(shù)在區(qū)間上的最小值為,則求的值;
(2)設(shè)數(shù)列為等比數(shù)列,數(shù)列滿足,若 ,其中,則
①當(dāng)時(shí),求
②設(shè)為數(shù)列的前項(xiàng)和,若對(duì)于任意的正整數(shù),都有,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

已知函數(shù)f(x)是偶函數(shù),并且對(duì)于定義域內(nèi)任意的x,滿足f(x+2)=-
1f(x)
,當(dāng)3<x<4時(shí),f(x)=x,則f(2008.5)=
 

查看答案和解析>>

一.選擇題:

題號(hào)

1

2

3

4

5

6

7

8

答案

C

A

C

B

B

A

B

D

二.填空題:

9.6、30、10;                 10.?5;               11.

12.?250;                     13.;              14.③④

三.解答題:

15.解: ;  ………5分

方程有非正實(shí)數(shù)根

 

綜上: ……………………12分16.解:(I)設(shè)袋中原有個(gè)白球,由題意知

可得(舍去)

答:袋中原有3個(gè)白球. 。。。。。。。。4分

(II)由題意,的可能取值為1,2,3,4,5

 

所以的分布列為:

1

2

3

4

5

。。。。。。。。。9分

(III)因?yàn)榧紫热?所以甲只有可能在第一次,第三次和第5次取球,記”甲取到白球”為事件,則

答:甲取到白球的概率為.。。。。。。。。13分

17.解:(1)由.,∴=1;。。。。。。。。。4分

(2)任取∈(1,+∞),且設(shè),則:

>0,

在(1,+∞)上是單調(diào)遞減函數(shù);。。。。。。。。。8分

(3)當(dāng)直線∈R)與的圖象無公共點(diǎn)時(shí),=1,

<2+=4=,|-2|+>2,

得:.。。。。。。。。13分

18.(Ⅰ)證明:∵底面底面, ∴

   又∵平面平面

    ∴平面3分

(Ⅱ)解:∵點(diǎn)分別是的中點(diǎn),

,由(Ⅰ)知平面

平面

為二面角的平面角,

底面,∴與底面所成的角即為

,∵為直角三角形斜邊的中點(diǎn),

為等腰三角形,且,∴

(Ⅲ)過點(diǎn)于點(diǎn),∵底面,

   ∴底面,為直線在底面上的射影,

   要,由三垂線定理的逆定理有要

 設(shè),則由

 又∴在直角三角形中,

∵ 

在直角三角形中,

 ,即時(shí),

(Ⅲ)以點(diǎn)為坐標(biāo)原點(diǎn),建立如圖的直角坐標(biāo)系,設(shè),則,設(shè),則

,

,時(shí)時(shí),.

 

 

19  證明:(1)對(duì)任意x1, x2∈R, 當(dāng) a0,

=                         =……(3分)

∴當(dāng)時(shí),,即

  當(dāng)時(shí),函數(shù)f(x)是凸函數(shù).   ……(4分)

 (2) 當(dāng)x=0時(shí), 對(duì)于a∈R,有f(x)≤1恒成立;當(dāng)x∈(0, 1]時(shí), 要f(x)≤1恒成立

, ∴ 恒成立,∵ x∈(0, 1], ∴ ≥1, 當(dāng)=1時(shí), 取到最小值為0,∴ a≤0, 又a≠0,∴ a的取值范圍是.

由此可知,滿足條件的實(shí)數(shù)a的取值恒為負(fù)數(shù),由(1)可知函數(shù)f(x)是凸函數(shù)………10分

(3)令,∵,∴,……………..(11)分

,則,故

,則

;,……………..(12)分

,則;∴時(shí),.

綜上所述,對(duì)任意的,都有;……………..(13)分

所以,不是R上的凸函數(shù). ……………..(14)分

對(duì)任意,有

所以,不是上的凸函數(shù). ……………..(14)分

20. 解:(1)設(shè)數(shù)列的前項(xiàng)和為,則

……….4分

(2)為偶數(shù)時(shí),

為奇數(shù)時(shí),

………9分

(3)方法1、因?yàn)?sub>所以

當(dāng),時(shí),時(shí)

又由,兩式相減得

 所以若,則有………..14分

方法2、由,兩式相減得

………..11分

所以要證明,只要證明

或①由:

所以…………………14分

或②由:

…………………14分

數(shù)學(xué)歸納法:①當(dāng)

當(dāng)

②當(dāng)

當(dāng)

綜上①②知若,則有.

所以,若,則有.。。。。。。。。。14分

 

 


同步練習(xí)冊(cè)答案
主站蜘蛛池模板: 99精品欧美一区二区三区综合在线 | 久久国产成人 | 免费看91 | 美女视频一区二区三区 | 久草在线在线精品观看 | 免费黄色在线网址 | 制服 丝袜 综合 日韩 欧美 | 九九热精品在线观看 | 久草电影网| 欧美精品免费在线观看 | 波多野结衣 一区二区 | 久久国产亚洲 | 黄色一级毛片免费 | 天堂精品一区二区三区 | 国产不卡一区 | 中文在线亚洲 | 91精品国产综合久久久久久软件 | 高清一区二区 | 黄色小视频网 | 日本在线免费观看 | 影视一区二区 | 毛片免费在线观看 | 国产女人免费看a级丨片 | 日本在线黄色 | 亚洲免费观看 | 久久99国产精品久久99大师 | 久草精品在线 | 在线亚洲激情 | 日本精品黄色 | 亚洲日本乱码一区二区三区 | 一区二区免费 | 国产毛片在线 | 成人黄色在线观看 | 国产视频久久久久久久 | 久久久久久久久久国产 | 欧美午夜网 | 国产欧美一区二区三区在线看 | 日韩精品专区在线影院重磅 | 欧美一级免费看 | 欧美激情 | 成人在线视频免费观看 |