題目列表(包括答案和解析)
已知函數.(
)
(1)若在區間
上單調遞增,求實數
的取值范圍;
(2)若在區間上,函數
的圖象恒在曲線
下方,求
的取值范圍.
【解析】第一問中,首先利用在區間
上單調遞增,則
在區間
上恒成立,然后分離參數法得到
,進而得到范圍;第二問中,在區間
上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.然后求解得到。
解:(1)在區間
上單調遞增,
則在區間
上恒成立. …………3分
即,而當
時,
,故
.
…………5分
所以.
…………6分
(2)令,定義域為
.
在區間上,函數
的圖象恒在曲線
下方等價于
在區間
上恒成立.
∵ …………9分
① 若,令
,得極值點
,
,
當,即
時,在(
,+∞)上有
,此時
在區間
上是增函數,并且在該區間上有
,不合題意;
當,即
時,同理可知,
在區間
上遞增,
有,也不合題意;
…………11分
② 若,則有
,此時在區間
上恒有
,從而
在區間
上是減函數;
要使在此區間上恒成立,只須滿足
,
由此求得的范圍是
. …………13分
綜合①②可知,當時,函數
的圖象恒在直線
下方.
(本題總分14分)已知函數=ax2+x-3,g(x)=-x+4lnx
h(x)=-g(x)
(1)當a=1時,求函數h(x)的極值。
(2)若函數h(x)有兩個極值點,求實數a的取值范圍。
(3)定義:對于函數F(x)和G(x),若存在直線l:y=kx+b,使得對于函數F(x)和
G(x)各自定義域內的任意x,都有F(x)≥kx+b且G(x)≤kx+b成立,則稱直線l:y=kx+b為函數F(x)和G(x)的“隔離直線”。則當a=1時,函數和g(x)是否存在“隔離直線”。若存在,求出所有的“隔離直線”。若不存在,請說明理由。
已知:函數(
),
.
(1)若函數圖象上的點到直線
距離的最小值為
,求
的值;
(2)關于的不等式
的解集中的整數恰有3個,求實數
的取值范圍;
(3)對于函數與
定義域上的任意實數
,若存在常數
,使得不等式
和
都成立,則稱直線
為函數
與
的“分界線”。設
,
,試探究
與
是否存在“分界線”?若存在,求出“分界線”的方程;若不存
在,請說明理由.
已知函數與函數
的圖象關于
對稱,
(1)若則
的最大值為 ;
(2)設是定義在
上的偶函數,對任意的
,都有
,且當
時,
,若關于
的方程
在區間
內恰有三個不同實根,則實數
的取值范圍是
。
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com