日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(2) 設(shè)與軸交點(diǎn)為.求證: 查看更多

 

題目列表(包括答案和解析)

已知點(diǎn)為圓上的動(dòng)點(diǎn),且不在軸上,軸,垂足為,線段中點(diǎn)的軌跡為曲線,過(guò)定點(diǎn)任作一條與軸不垂直的直線,它與曲線交于兩點(diǎn)。

(I)求曲線的方程;

(II)試證明:在軸上存在定點(diǎn),使得總能被軸平分

【解析】第一問(wèn)中設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為

第二問(wèn)中,設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 

,∴

確定結(jié)論直線與曲線總有兩個(gè)公共點(diǎn).

然后設(shè)點(diǎn),的坐標(biāo)分別, ,則,  

要使軸平分,只要得到。

(1)設(shè)為曲線上的任意一點(diǎn),則點(diǎn)在圓上,

,曲線的方程為.  ………………2分       

(2)設(shè)點(diǎn)的坐標(biāo)為,直線的方程為,  ………………3分   

代入曲線的方程,可得 ,……5分            

,∴

∴直線與曲線總有兩個(gè)公共點(diǎn).(也可根據(jù)點(diǎn)M在橢圓的內(nèi)部得到此結(jié)論)

………………6分

設(shè)點(diǎn),的坐標(biāo)分別, ,則,   

要使軸平分,只要,            ………………9分

,        ………………10分

也就是

,即只要  ………………12分  

當(dāng)時(shí),(*)對(duì)任意的s都成立,從而總能被軸平分.

所以在x軸上存在定點(diǎn),使得總能被軸平分

 

查看答案和解析>>

  設(shè)拋物線的準(zhǔn)線與軸交點(diǎn)為,過(guò)點(diǎn) 作直線交拋物線與不同的點(diǎn)兩點(diǎn).

(1)求線段中點(diǎn)的軌跡方程;

(2)若線段的垂直平分線交拋物線對(duì)稱軸與,求證:.

查看答案和解析>>

 設(shè)拋物線的準(zhǔn)線與軸交點(diǎn)為,過(guò)點(diǎn) 作直線交拋物線與不同的點(diǎn)兩點(diǎn).
(1)求線段中點(diǎn)的軌跡方程;
(2)若線段的垂直平分線交拋物線對(duì)稱軸與,求證:.

查看答案和解析>>

已知定點(diǎn)與分別在軸、軸上的動(dòng)點(diǎn)滿足:,動(dòng)點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)任作一直線與點(diǎn)的軌跡交于兩點(diǎn),直線與直線分別交于點(diǎn)為坐標(biāo)原點(diǎn));
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.

查看答案和解析>>

已知定點(diǎn)與分別在軸、軸上的動(dòng)點(diǎn)滿足:,動(dòng)點(diǎn)滿足
(1)求動(dòng)點(diǎn)的軌跡的方程;
(2)設(shè)過(guò)點(diǎn)任作一直線與點(diǎn)的軌跡交于兩點(diǎn),直線與直線分別交于點(diǎn)為坐標(biāo)原點(diǎn));
(i)試判斷直線與以為直徑的圓的位置關(guān)系;
(ii)探究是否為定值?并證明你的結(jié)論.

查看答案和解析>>

         天津精通高考復(fù)讀學(xué)校數(shù)學(xué)教研組組長(zhǎng)  么世濤

一、選擇題 :1-4, BBBB ;5-8,DABD。

提示:1.

2.

3.用代替

4.

5.,

6.

7.略

8.     

二、填空題:9.60;  10. 15:10:20   ;  11.;  12.

13.0.74  ; 14. ①、;②、圓;③.

提示: 9.

10.

11.

12.

13.

14.略

 

三、解答題

15. 解:(1).    

  (2)設(shè)抽取件產(chǎn)品作檢驗(yàn),則,  

    ,得:,即

   故至少應(yīng)抽取8件產(chǎn)品才能滿足題意.  

16. 解:由題意得,原式可化為,

   

故原式=.

17. 解:(1)顯然,連接,∵

.由已知,∴.

 ∵

.

 ∴.        

 (2)     

當(dāng)且僅當(dāng)時(shí),等號(hào)成立.此時(shí),即的中點(diǎn).于是由,知平面是其交線,則過(guò)

 ∴就是與平面所成的角.由已知得

 ∴, .      

(3) 設(shè)三棱錐的內(nèi)切球半徑為,則

 ∴.     

18. (1)    

(2) ∵

∴當(dāng)時(shí),      

∴當(dāng)時(shí),  

,,,.

的最大值為中的最大者.

∴ 當(dāng)時(shí),有最大值為

19.(1)解:∵函數(shù)的圖象過(guò)原點(diǎn),

.      

又函數(shù)的圖象關(guān)于點(diǎn)成中心對(duì)稱,

.

(2)解:由題意有  即

 即,即.

 ∴數(shù)列{}是以1為首項(xiàng),1為公差的等差數(shù)列.

 ∴,即. ∴.

  ∴

(3)證明:當(dāng)時(shí),   

 故       

20. (1)解:∵,又

    ∴.             又∵     

    ,且

.        

(2)解:由猜想

    (3)證明:用數(shù)學(xué)歸納法證明:

    ①當(dāng)時(shí),,猜想正確;

    ②假設(shè)時(shí),猜想正確,即

1°若為正奇數(shù),則為正偶數(shù),為正整數(shù),

   

   2°若為正偶數(shù),則為正整數(shù),

,又,且

所以

即當(dāng)時(shí),猜想也正確          

   

由①,②可知,成立.     

(二)

一、1-4,AABB,5-8,CDCB;

提示: 1.  即   

2.   即

3.   即,也就是

4.先確定是哪兩個(gè)人的編號(hào)與座位號(hào)一致,有種情況,如編號(hào)為1的人坐1號(hào)座位,且編號(hào)為2的人坐2號(hào)座位有以下情形:

  • <ul id="kuawk"><tbody id="kuawk"></tbody></ul>
      <strike id="kuawk"></strike>
    • 人的編號(hào)

      1

      2

      3

      4

      5

      座位號(hào)

      1

      2

      5

      3

      4

       

      人的編號(hào)

      1

      2

      3

      4

      5

      座位號(hào)

      1

      2

      4

      5

      3

       

                                                       

       

       

      所以,符合條件的共有10×2=20種。

      5. ,又,所以

      ,且,所以

      6.略

      7.略

      8. 密文shxc中的s對(duì)應(yīng)的數(shù)字為19,按照變換公式:

      ,原文對(duì)應(yīng)的數(shù)字是12,對(duì)應(yīng)的字母是

      密文shxc中的h對(duì)應(yīng)的數(shù)字為8,按照變換公式:

      ,原文對(duì)應(yīng)的數(shù)字是15,對(duì)應(yīng)的字母是

      二、9.; 10.2;11.-48; 12. ; 13、5; 14、①3,②,③

      提示:

      9. 

      10. 數(shù)列是首相為,公差為的等差數(shù)列,于是

        又,所以

      11. 特殊值法。取通徑,則

      12.因,所以同解于

      所以

      13.略 。

       

      14、(1)如圖:∵

      ∴∠1=∠2=∠3=∠P+∠PFD          

      =∠FEO+∠EFO

      ∴∠FEO=∠P,可證△OEF∽△DPF

      即有,又根據(jù)相交弦定理DF?EF=BF?AF

      可推出,從而

      ∴PF=3

      (2) ∵PFQF,  ∴  ∴

      (3)略。

      三、15.解:(1)  依題知,得  

      文本框: 子曰:三人行,必有我?guī)熝桑簱衿渖普叨鴱闹洳簧普叨闹>▋?nèi)部學(xué)員使用么老師答疑電話
13702071025
 所以

      (2) 由(1)得

          

      ∴            

      的值域?yàn)?sub>

       

      16.解:設(shè)飛機(jī)A能安全飛行的概率為,飛機(jī)B能安全飛行的概率為,則

        所以

      當(dāng)時(shí),

      當(dāng)時(shí),

      當(dāng)時(shí),

      故當(dāng)時(shí),飛機(jī)A安全;當(dāng)時(shí),飛機(jī)A與飛機(jī)B一樣安全;當(dāng)時(shí),飛機(jī)B安全。

       

      17.(1) 證明:以D為坐標(biāo)原點(diǎn),DA所在的直線x

      軸,建立空間直角坐標(biāo)系如圖。

      設(shè),則

      ,所以

                          即  ,也就是

      ,所以 ,即

      (2)解:方法1、找出二面角,再計(jì)算。

       

      方法2、由(1)得:(當(dāng)且僅當(dāng)取等號(hào))

      分別為的中點(diǎn),于是

      ,所以

      設(shè)是平面的一個(gè)法向量,則

        也就是

      易知是平面的一個(gè)法向量,

                         

      18.(1) 證明:依題知得:

      整理,得

       所以   即 

      故 數(shù)列是等差數(shù)列。

      (2) 由(1)得   即 ()

        所以

       =

      =

       

      19.解:(1) 依題知得

      欲使函數(shù)是增函數(shù),僅須

      同步練習(xí)冊(cè)答案
      主站蜘蛛池模板: 欧美福利视频 | 日韩一区二区在线免费观看 | 亚洲涩涩涩 | 色婷婷在线播放 | 国产在线一区二区三区视频 | 欧美国产日本一区 | 日本在线高清 | 欧美成人精品一区二区男人看 | 国产精品国产三级国产专播品爱网 | 日日草影院 | 一本大道久久a久久精二百 羞羞视频在线观免费观看 国产第一区在线观看 | 中文字幕日韩欧美 | 我看午夜视频 | 久久久精品免费观看 | 国产一区a| 欧美亚洲三级 | 久久精品视频网 | 日本成人三级 | 亚洲国产精品成人无久久精品 | 91精品国产日韩91久久久久久 | 91精品国产91久久综合桃花 | 久久精品国产一区二区三区不卡 | 国产激情在线 | 国产日韩欧美一区二区 | 极品少妇一区二区三区精品视频 | 亚洲国产成人精品女人久久久 | 日本三级在线观看网站 | 黄网站在线播放 | 久久9视频 | 欧美日韩亚洲视频 | 一级a性色生活片久久毛片波多野 | 欧美日韩在线观看中文字幕 | 中文字幕av在线播放 | 亚洲精品91 | 农村妇女毛片精品久久久 | 91精品国产综合久久精品图片 | 久久艹国产视频 | 日本久久久久久 | 中文字幕精品一区久久久久 | 成人免费在线观看 | 久在线 |
      <kbd id="kuawk"><pre id="kuawk"></pre></kbd>