日日人人_亚洲美女在线视频_av手机在线播放_国产大片aaa_欧美中文日韩_午夜理伦三级

(Ⅲ)證明:當時.存在正數.使得不等式.成立的最小正數.并求此時的最小正數.第二部分(總分40分.加試時間30分鐘)注意事項:答卷前.請考生務必將自己的學校.姓名.考試號等信息填寫在答卷密封線內.解答過程應寫在答題卷的相應位置上.在其它地方答題無效.[選做題]在A.B.C.D四小題中只能選做2題.每題10分.共計20分.請在答題紙指定區域內作答.解答應寫出文字說明.證明過程或演算步驟. 查看更多

 

題目列表(包括答案和解析)

定義在正實數集上的函數f(x)滿足下列條件:
①存在常數a(0<a<1),使得f(a)=1;②對任意實數m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數集上單調遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數a的取值范圍.

查看答案和解析>>

定義在正實數集上的函數f(x)滿足下列條件:
①存在常數a(0<a<1),使得f(a)=1;②對任意實數m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數集上單調遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數a的取值范圍.

查看答案和解析>>

定義在正實數集上的函數f(x)滿足下列條件:
①存在常數a(0<a<1),使得f(a)=1;②對任意實數m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數集上單調遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數a的取值范圍.

查看答案和解析>>

定義在正實數集上的函數f(x)滿足下列條件:
①存在常數a(0<a<1),使得f(a)=1;②對任意實數m,當x∈R+時,有f(xm)=mf(x).
(1)求證:對于任意正數x,y,f(xy)=f(x)+f(y);
(2)證明:f(x)在正實數集上單調遞減;
(3)若不等式f(loga2(4-x)+2)-f(loga(4-x)8)≤3恒成立,求實數a的取值范圍.

查看答案和解析>>

已知函數,當時,函數取得極大值.

(1)求實數的值;

(2)已知結論:若函數在區間內導數都存在,且,則存在,使得.試用這個結論證明:若,函數,則對任意,都有

(3)已知正數,滿足,求證:當,時,對任意大于,且互不相等的實數,都有.

 

查看答案和解析>>

 

第 一 部 分

 

一、填空題:

1.        2.          3.1            4.16

5.                                 6.               7.64           8.

9.25                                 10.①④            11.        12.

13.                          14.

二、解答題:

15.解:(Ⅰ)依題意:,

,解之得(舍去)   …………………7分

(Ⅱ),∴  ,,  ………………………9分

∴    …………………………………11分

.      ……………………………………………14分

16.解:(Ⅰ)因為主視圖和左視圖均為矩形、所以該三棱柱為直三棱柱.

連BC1交B1C于O,則O為BC1的中點,連DO。

則在中,DO是中位線,

∴DO∥AC1.                ………………………………………………………4分

∵DO平面DCB1,AC1平面DCB1,

∴AC1∥平面CDB1.           ………………………………………………………7分

(Ⅱ)由已知可知是直角三角形,

∵  ,

∴  平面平面,

∴  

∵   ,

∴  平面,

平面

∴  。

17.解:(Ⅰ)由題意知:,

一般地: ,…4分

∴  )!7分

(Ⅱ)2008年諾貝爾獎發獎后基金總額為:

 ,…………………………………………10分

2009年度諾貝爾獎各項獎金額為萬美元, ………12分

與150萬美元相比少了約14萬美元。     …………………………………………14分

答:新聞 “2009年度諾貝爾獎各項獎金高達150萬美元”不真,是假新聞!15分

18.解:(Ⅰ)圓軸交點坐標為,

,故,    …………………………………………2分

所以,

橢圓方程是:               …………………………………………5分

(Ⅱ)設直線軸的交點是,依題意,

,

,

,

,

 

(Ⅲ)直線的方程是,…………………………………………………6分

圓D的圓心是,半徑是,……………………………………………8分

設MN與PD相交于,則是MN的中點,且PM⊥MD,

……10分

當且僅當最小時,有最小值,

最小值即是點到直線的距離是,…………………12分

所以的最小值是。  ……………………………15分

 

19.解:(Ⅰ)點的坐標依次為,,…,

,…,           ……………………………2分

,…,

共線;則

,

, ……………………………4分

,

所以數列是等比數列。          ……………………………………………6分

(Ⅱ)依題意,

,

兩式作差,則有:,   ………………………8分

,故,   ……………………………………………10分

即數列是公差為的等差數列;此數列的前三項依次為

,

,可得

,或,或。           ………………………………………12分

數列的通項公式是,或,或。    ………14分

知,時,不合題意;

時,不合題意;

時,

所以,數列的通項公式是。  ……………………………………16分

 

20.解:(Ⅰ)函數定義域

,    ……………………………………………4分

(Ⅱ),由(Ⅰ)

,,

,單調遞增,

所以。

,

,也就是

所以,存在值使得對一個,方程都有唯一解!10分

(Ⅲ),

以下證明,對的數及數,不等式不成立。

反之,由,亦即成立,

因為

,這是不可能的。這說明是滿足條件的最小正數。

這樣不等式恒成立,

恒成立,

∴  ,最小正數=4 !16分

 

 第二部分(加試部分)

21.(A)解:AD2=AE?AB,AB=4,EB=3      ……………………………………4分

△ADE∽△ACO,                ……………………………………………8分

CD=3                         ……………………………………………10分

(B)解:(Ⅰ)

所以點作用下的點的坐標是!5分

(Ⅱ)

是變換后圖像上任一點,與之對應的變換前的點是,

,

也就是,即,

所以,所求曲線的方程是!10分

(C)解:由已知圓的半徑為,………4分

又圓的圓心坐標為,所以圓過極點,

所以,圓的極坐標方程是。……………………………………………10分

(D)證明:

            ……………………………………6分

=2-

<2                              ……………………………………10分

 

 

 

22.解:(Ⅰ)∵,∴,

∴切線l的方程為,即.……………………………………………4分

(Ⅱ)令=0,則.令=0,則x=1.

 ∴A=.………………10分

23.解:(Ⅰ)記“該生在前兩次測試中至少有一次通過”的事件為事件A,則

P(A)=

答:該生在前兩次測試中至少有一次通過的概率為。 …………………………4分

(Ⅱ)參加測試次數的可能取值為2,3,4,

      ,

    ,

      ,    ……………………………………………7分

        故的分布列為:

2

3

4

     ……………………………………………10分

 

 

 


同步練習冊答案
主站蜘蛛池模板: 国产一区在线观看视频 | 国产视频久久久久久 | 国产亚洲精品一区二区 | 亚洲成人av电影 | 六月丁香啪啪 | 中文字幕自拍偷拍 | 狠狠躁夜夜躁人人爽天天高潮 | 成人日韩在线观看 | 天天综合网7799精品 | 精品久久国产 | 欧美亚洲激情 | 国产精品美女久久久久久久久久久 | 精品一区二区免费视频 | 青青草精品 | 在线中文字幕日韩 | 日韩大片免费观看视频播放 | 欧美成人手机在线 | 国产免费拔擦拔擦8x高清 | 午夜精品影院 | 日韩欧美三区 | 夜夜骑天天射 | 爱爱网址 | av黄色在线| 好姑娘影视在线观看高清 | 午夜影视 | 久久亚洲一区二区 | 精品亚洲一区二区三区 | 欧美成人精品一区二区男人看 | 午夜日韩 | 国产小视频在线观看 | 亚洲精品国产精品乱码不99按摩 | 日韩欧美三级 | 日韩三级电影在线免费观看 | 性色在线 | 成人精品| 日本一区二区不卡 | 久久精品1区2区 | 日韩中文字幕无码一区二区三区 | 日韩在线一区二区 | 日本高清视频在线播放 | 毛片aaa|