科目: 來源: 題型:
【題目】已知圓,直線
,動圓P與圓M相外切,且與直線l相切.設動圓圓心P的軌跡為E.
(1)求E的方程;
(2)若點A,B是E上的兩個動點,O為坐標原點,且,求證:直線AB恒過定點.
查看答案和解析>>
科目: 來源: 題型:
【題目】互聯網使我們的生活日益便捷,網絡外賣也開始成為不少人日常生活中不可或缺的一部分,某市一調查機構針對該市市場占有率較高的甲、乙兩家網絡外賣企業(以下外賣甲、外賣乙)的經營情況進行了調查,調查結果如下表:
1日 | 2日 | 3日 | 4日 | 5日 | |
外賣甲日接單x(百單) | 5 | 2 | 9 | 8 | 11 |
外賣乙日接單y(百單) | 2 | 3 | 10 | 5 | 15 |
(1)試根據表格中這五天的日接單量情況,從統計的角度說明這兩家外賣企業的經營狀況;
(2)據統計表明,y與x之間具有線性關系.
①請用相關系數r對y與x之間的相關性強弱進行判斷;(若,則可認為y與x有較強的線性相關關系(r值精確到0.001))
②經計算求得y與x之間的回歸方程為,假定每單外賣業務企業平均能獲純利潤3元,試預測當外賣乙日接單量不低于25百單時,外賣甲所獲取的日純利潤的大致范圍.(x值精確到0.01)
相關公式:,
參考數據:.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖的折線圖是某超市2018年一月份至五月份的營業額與成本數據,根據該折線圖,下列說法正確的是( )
A.該超市2018年的前五個月中三月份的利潤最高
B.該超市2018年的前五個月的利潤一直呈增長趨勢
C.該超市2018年的前五個月的利潤的中位數為0.8萬元
D.該超市2018年前五個月的總利潤為3.5萬元
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,梯形
中,
,過
分別作
,
,垂足分別
,
,已知
,將梯形
沿
同側折起,得空間幾何體
,如圖
.
1
若
,證明:
平面
;
2
若
,
,線段
上存在一點
,滿足
與平面
所成角的正弦值為
,求
的長.
查看答案和解析>>
科目: 來源: 題型:
【題目】《山東省高考改革試點方案》規定:從2017年秋季高中入學的新生開始,不分文理科;2020年開始,高考總成績由語數外3門統考科目和物理、化學等六門選考科目構成.將每門選考科目的考生原始成績從高到低劃分為A、B+、B、C+、C、D+、D、E共8個等級.參照正態分布原則,確定各等級人數所占比例分別為3%、7%、16%、24%、24%、16%、7%、3%.選考科目成績計入考生總成績時,將A至E等級內的考生原始成績,依照等比例轉換法則,分別轉換到[91,100]、[81,90]、[71,80]、[61,70]、[51,60]、[41,50]、[31,40]、[21,30]八個分數區間,得到考生的等級成績.
某校高一年級共2000人,為給高一學生合理選科提供依據,對六個選考科目進行測試,其中物理考試原始成績基本服從正態分布N(60,169).
(Ⅰ)求物理原始成績在區間(47,86)的人數;
(Ⅱ)按高考改革方案,若從全省考生中隨機抽取3人,記X表示這3人中等級成績在區間[61,80]的人數,求X的分布列和數學期望.
(附:若隨機變量,則
,
,
)
查看答案和解析>>
科目: 來源: 題型:
【題目】某北方村莊4個草莓基地,采用水培陽光栽培方式種植的草莓個大味美,一上市便成為消費者爭相購買的對象.光照是影響草莓生長的關鍵因素,過去50年的資料顯示,該村莊一年當中12個月份的月光照量X(小時)的頻率分布直方圖如下圖所示(注:月光照量指的是當月陽光照射總時長).
(1)求月光照量(小時)的平均數和中位數;
(2)現準備按照月光照量來分層抽樣,抽取一年中的4個月份來比較草莓的生長狀況,問:應在月光照量,
,
的區間內各抽取多少個月份?
(3)假設每年中最熱的5,6,7,8,9,10月的月光照量是大于等于240小時,且6,7,8月的月光照量
是大于等于320小時,那么,從該村莊2018年的5,6,7,8,9,10這6個月份之中隨機抽取2個月份的月光照量進行調查,求抽取到的2個月份的月光照量
(小時)都不低于320的概率.
查看答案和解析>>
湖北省互聯網違法和不良信息舉報平臺 | 網上有害信息舉報專區 | 電信詐騙舉報專區 | 涉歷史虛無主義有害信息舉報專區 | 涉企侵權舉報專區
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com